亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study a class of dynamical systems modelled as Markov chains that admit an invariant distribution via the corresponding transfer, or Koopman, operator. While data-driven algorithms to reconstruct such operators are well known, their relationship with statistical learning is largely unexplored. We formalize a framework to learn the Koopman operator from finite data trajectories of the dynamical system. We consider the restriction of this operator to a reproducing kernel Hilbert space and introduce a notion of risk, from which different estimators naturally arise. We link the risk with the estimation of the spectral decomposition of the Koopman operator. These observations motivate a reduced-rank operator regression (RRR) estimator. We derive learning bounds for the proposed estimator, holding both in i.i.d. and non i.i.d. settings, the latter in terms of mixing coefficients. Our results suggest RRR might be beneficial over other widely used estimators as confirmed in numerical experiments both for forecasting and mode decomposition.

相關內容

Modern network datasets are often composed of multiple layers, either as different views, time-varying observations, or independent sample units, resulting in collections of networks over the same set of vertices but with potentially different connectivity patterns on each network. These data require models and methods that are flexible enough to capture local and global differences across the networks, while at the same time being parsimonious and tractable to yield computationally efficient and theoretically sound solutions that are capable of aggregating information across the networks. This paper considers the multilayer degree-corrected stochastic blockmodel, where a collection of networks share the same community structure, but degree-corrections and block connection probability matrices are permitted to be different. We establish the identifiability of this model and propose a spectral clustering algorithm for community detection in this setting. Our theoretical results demonstrate that the misclustering error rate of the algorithm improves exponentially with multiple network realizations, even in the presence of significant layer heterogeneity with respect to degree corrections, signal strength, and spectral properties of the block connection probability matrices. Simulation studies show that this approach improves on existing multilayer community detection methods in this challenging regime. Furthermore, in a case study of US airport data through January 2016 -- September 2021, we find that this methodology identifies meaningful community structure and trends in airport popularity influenced by pandemic impacts on travel.

Given ample experimental data from a system governed by differential equations, it is possible to use deep learning techniques to construct the underlying differential operators. In this work we perform symbolic discovery of differential operators in a situation where there is sparse experimental data. This small data regime in machine learning can be made tractable by providing our algorithms with prior information about the underlying dynamics. Physics Informed Neural Networks (PINNs) have been very successful in this regime (reconstructing entire ODE solutions using only a single point or entire PDE solutions with very few measurements of the initial condition). We modify the PINN approach by adding a neural network that learns a representation of unknown hidden terms in the differential equation. The algorithm yields both a surrogate solution to the differential equation and a black-box representation of the hidden terms. These hidden term neural networks can then be converted into symbolic equations using symbolic regression techniques like AI Feynman. In order to achieve convergence of these neural networks, we provide our algorithms with (noisy) measurements of both the initial condition as well as (synthetic) experimental data obtained at later times. We demonstrate strong performance of this approach even when provided with very few measurements of noisy data in both the ODE and PDE regime.

Graphical models have long been studied in statistics as a tool for inferring conditional independence relationships among a large set of random variables. The most existing works in graphical modeling focus on the cases that the data are Gaussian or mixed and the variables are linearly dependent. In this paper, we propose a double regression method for learning graphical models under the high-dimensional nonlinear and non-Gaussian setting, and prove that the proposed method is consistent under mild conditions. The proposed method works by performing a series of nonparametric conditional independence tests. The conditioning set of each test is reduced via a double regression procedure where a model-free sure independence screening procedure or a sparse deep neural network can be employed. The numerical results indicate that the proposed method works well for high-dimensional nonlinear and non-Gaussian data.

Neural networks, especially the recent proposed neural operator models, are increasingly being used to find the solution operator of differential equations. Compared to traditional numerical solvers, they are much faster and more efficient in practical applications. However, one critical issue is that training neural operator models require large amount of ground truth data, which usually comes from the slow numerical solvers. In this paper, we propose a physics-guided data augmentation (PGDA) method to improve the accuracy and generalization of neural operator models. Training data is augmented naturally through the physical properties of differential equations such as linearity and translation. We demonstrate the advantage of PGDA on a variety of linear differential equations, showing that PGDA can improve the sample complexity and is robust to distributional shift.

Many machine learning problems encode their data as a matrix with a possibly very large number of rows and columns. In several applications like neuroscience, image compression or deep reinforcement learning, the principal subspace of such a matrix provides a useful, low-dimensional representation of individual data. Here, we are interested in determining the $d$-dimensional principal subspace of a given matrix from sample entries, i.e. from small random submatrices. Although a number of sample-based methods exist for this problem (e.g. Oja's rule \citep{oja1982simplified}), these assume access to full columns of the matrix or particular matrix structure such as symmetry and cannot be combined as-is with neural networks \citep{baldi1989neural}. In this paper, we derive an algorithm that learns a principal subspace from sample entries, can be applied when the approximate subspace is represented by a neural network, and hence can be scaled to datasets with an effectively infinite number of rows and columns. Our method consists in defining a loss function whose minimizer is the desired principal subspace, and constructing a gradient estimate of this loss whose bias can be controlled. We complement our theoretical analysis with a series of experiments on synthetic matrices, the MNIST dataset \citep{lecun2010mnist} and the reinforcement learning domain PuddleWorld \citep{sutton1995generalization} demonstrating the usefulness of our approach.

We present a new method of modelling numerical systems where there are two distinct output solution classes, for example tipping points or bifurcations. Gaussian process emulation is a useful tool in understanding these complex systems and provides estimates of uncertainty, but we aim to include systems where there are discontinuities between the two output solutions. Due to continuity assumptions, we consider current methods of classification to split our input space into two output regions. Classification and logistic regression methods currently rely on drawing from an independent Bernoulli distribution, which neglects any information known in the neighbouring area. We build on this by including correlation between our input points. Gaussian processes are still a vital element, but used in latent space to model the two regions. Using the input values and an associated output class label, the latent variable is estimated using MCMC sampling and a unique likelihood. A threshold (usually at zero) defines the boundary. We apply our method to a motivating example provided by the hormones associated with the reproductive system in mammals, where the two solutions are associated with high and low rates of reproduction.

This work studies the problem of transfer learning under the functional linear regression model framework, which aims to improve the estimation and prediction of the target model by leveraging the information from related source models. We measure the relatedness between target and source models using Reproducing Kernel Hilbert Spaces (RKHS) norm, allowing the type of information being transferred to be interpreted by the structural properties of the spaces. Two transfer learning algorithms are proposed: one transfers information from source tasks when we know which sources to use, while the other one aggregates multiple transfer learning results from the first algorithm to achieve robust transfer learning without prior information about the sources. Furthermore, we establish the optimal convergence rates for the prediction risk in the target model, making the statistical gain via transfer learning mathematically provable. The theoretical analysis of the prediction risk also provides insights regarding what factors are affecting the transfer learning effect, i.e. what makes source tasks useful to the target task. We demonstrate the effectiveness of the proposed transfer learning algorithms on extensive synthetic data as well as real financial data application.

Physical laws governing population dynamics are generally expressed as differential equations. Research in recent decades has incorporated fractional-order (non-integer) derivatives into differential models of natural phenomena, such as reaction-diffusion systems. In this paper, we develop a method to numerically solve a multi-component and multi-dimensional space-fractional system. For space discretization, we apply a Fourier spectral method that is suited for multidimensional PDE systems. Efficient approximation of time-stepping is accomplished with a locally one dimensional exponential time differencing approach. We show the effect of different fractional parameters on growth models and consider the convergence, stability, and uniqueness of solutions, as well as the biological interpretation of parameters and boundary conditions.

With the rapid development of data collection techniques, complex data objects that are not in the Euclidean space are frequently encountered in new statistical applications. Fr\'echet regression model (Peterson & M\"uller 2019) provides a promising framework for regression analysis with metric space-valued responses. In this paper, we introduce a flexible sufficient dimension reduction (SDR) method for Fr\'echet regression to achieve two purposes: to mitigate the curse of dimensionality caused by high-dimensional predictors and to provide a visual inspection tool for Fr\'echet regression. Our approach is flexible enough to turn any existing SDR method for Euclidean (X,Y) into one for Euclidean X and metric space-valued Y. The basic idea is to first map the metric-space valued random object $Y$ to a real-valued random variable $f(Y)$ using a class of functions, and then perform classical SDR to the transformed data. If the class of functions is sufficiently rich, then we are guaranteed to uncover the Fr\'echet SDR space. We showed that such a class, which we call an ensemble, can be generated by a universal kernel. We established the consistency and asymptotic convergence rate of the proposed methods. The finite-sample performance of the proposed methods is illustrated through simulation studies for several commonly encountered metric spaces that include Wasserstein space, the space of symmetric positive definite matrices, and the sphere. We illustrated the data visualization aspect of our method by exploring the human mortality distribution data across countries and by studying the distribution of hematoma density.

Trust has emerged as a key factor in people's interactions with AI-infused systems. Yet, little is known about what models of trust have been used and for what systems: robots, virtual characters, smart vehicles, decision aids, or others. Moreover, there is yet no known standard approach to measuring trust in AI. This scoping review maps out the state of affairs on trust in human-AI interaction (HAII) from the perspectives of models, measures, and methods. Findings suggest that trust is an important and multi-faceted topic of study within HAII contexts. However, most work is under-theorized and under-reported, generally not using established trust models and missing details about methods, especially Wizard of Oz. We offer several targets for systematic review work as well as a research agenda for combining the strengths and addressing the weaknesses of the current literature.

北京阿比特科技有限公司