Permutation polynomials with few terms (especially permutation binomials) attract many people due to their simple algebraic structure. Despite the great interests in the study of permutation binomials, a complete characterization of permutation binomials is still unknown. In this paper, we give a classification of permutation binomials of the form $x^i+ax$ over $\mathbb{F}_{2^n}$, where $n\leq 8$ by characterizing three new classes of permutation binomials. In particular one of them has relatively large index $\frac{q^2+q+1}{3}$ over $\mathbb{F}_{q^3}$.
Algorithms for causal discovery have recently undergone rapid advances and increasingly draw on flexible nonparametric methods to process complex data. With these advances comes a need for adequate empirical validation of the causal relationships learned by different algorithms. However, for most real data sources true causal relations remain unknown. This issue is further compounded by privacy concerns surrounding the release of suitable high-quality data. To help address these challenges, we gather a complex dataset comprising measurements from an assembly line in a manufacturing context. This line consists of numerous physical processes for which we are able to provide ground truth causal relationships on the basis of a detailed study of the underlying physics. We use the assembly line data and associated ground truth information to build a system for generation of semisynthetic manufacturing data that supports benchmarking of causal discovery methods. To accomplish this, we employ distributional random forests in order to flexibly estimate and represent conditional distributions that may be combined into joint distributions that strictly adhere to a causal model over the observed variables. The estimated conditionals and tools for data generation are made available in our Python library $\texttt{causalAssembly}$. Using the library, we showcase how to benchmark several well-known causal discovery algorithms.
This paper addresses structured normwise, mixed, and componentwise condition numbers (CNs) for a linear function of the solution to the generalized saddle point problem (GSPP). We present a general framework enabling us to measure the structured CNs of the individual solution components and derive their explicit formulae when the input matrices have symmetric, Toeplitz, or some general linear structures. In addition, compact formulae for the unstructured CNs are obtained, which recover previous results on CNs for GSPPs for specific choices of the linear function. Furthermore, an application of the derived structured CNs is provided to determine the structured CNs for the weighted Teoplitz regularized least-squares problems and Tikhonov regularization problems, which retrieves some previous studies in the literature.
For the numerical solution of Dirichlet-type boundary value problems associated to nonlinear fractional differential equations of order $\alpha \in (1,2)$ that use Caputo derivatives, we suggest to employ shooting methods. In particular, we demonstrate that the so-called proportional secting technique for selecting the required initial values leads to numerical schemes that converge to high accuracy in a very small number of shooting iterations, and we provide an explanation of the analytical background for this favourable numerical behaviour.
Karppa & Kaski (2019) proposed a novel ``broken" or ``opportunistic" matrix multiplication algorithm, based on a variant of Strassen's algorithm, and used this to develop new algorithms for Boolean matrix multiplication, among other tasks. Their algorithm can compute Boolean matrix multiplication in $O(n^{2.778})$ time. While asymptotically faster matrix multiplication algorithms exist, most such algorithms are infeasible for practical problems. We describe an alternative way to use the broken multiplication algorithm to approximately compute matrix multiplication, either for real-valued or Boolean matrices. In brief, instead of running multiple iterations of the broken algorithm on the original input matrix, we form a new larger matrix by sampling and run a single iteration of the broken algorithm on it. Asymptotically, our algorithm has runtime $O(n^{2.763})$, a slight improvement over the Karppa-Kaski algorithm. Since the goal is to obtain new practical matrix-multiplication algorithms, we also estimate the concrete runtime for our algorithm for some large-scale sample problems. It appears that for these parameters, further optimizations are still needed to make our algorithm competitive.
We consider a natural generalization of chordal graphs, in which every minimal separator induces a subgraph with independence number at most $2$. Such graphs can be equivalently defined as graphs that do not contain the complete bipartite graph $K_{2,3}$ as an induced minor, that is, graphs from which $K_{2,3}$ cannot be obtained by a sequence of edge contractions and vertex deletions. We develop a polynomial-time algorithm for recognizing these graphs. Our algorithm relies on a characterization of $K_{2,3}$-induced minor-free graphs in terms of excluding particular induced subgraphs, called Truemper configurations.
When estimating the parameters in functional ARMA, GARCH and invertible, linear processes, covariance and lagged cross-covariance operators of processes in Cartesian product spaces appear. Such operators have been consistenly estimated in recent years, either less generally or under a strong condition. This article extends the existing literature by deriving explicit upper bounds for estimation errors for lagged covariance and lagged cross-covariance operators of processes in general Cartesian product Hilbert spaces, based on the mild weak dependence condition $L^p$-$m$-approximability. The upper bounds are stated for each lag, Cartesian power(s) and sample size, where the two processes in the context of lagged cross-covariance operators can take values in different spaces. General consequences of our results are also mentioned.
We present polynomial-time SDP-based algorithms for the following problem: For fixed $k \leq \ell$, given a real number $\epsilon>0$ and a graph $G$ that admits a $k$-colouring with a $\rho$-fraction of the edges coloured properly, it returns an $\ell$-colouring of $G$ with an $(\alpha \rho - \epsilon)$-fraction of the edges coloured properly in polynomial time in $G$ and $1 / \epsilon$. Our algorithms are based on the algorithms of Frieze and Jerrum [Algorithmica'97] and of Karger, Motwani and Sudan [JACM'98]. For $k = 2, \ell = 3$, our algorithm achieves an approximation ratio $\alpha = 1$, which is the best possible. When $k$ is fixed and $\ell$ grows large, our algorithm achieves an approximation ratio of $\alpha = 1 - o(1 / \ell)$. When $k, \ell$ are both large, our algorithm achieves an approximation ratio of $\alpha = 1 - 1 / \ell + 2 \ln \ell / k \ell - o(\ln \ell / k \ell) - O(1 / k^2)$; if we fix $d = \ell - k$ and allow $k, \ell$ to grow large, this is $\alpha = 1 - 1 / \ell + 2 \ln \ell / k \ell - o(\ln \ell / k \ell)$. By extending the results of Khot, Kindler, Mossel and O'Donnell [SICOMP'07] to the promise setting, we show that for large $k$ and $\ell$, assuming Khot's Unique Games Conjecture (UGC), it is \NP-hard to achieve an approximation ratio $\alpha$ greater than $1 - 1 / \ell + 2 \ln \ell / k \ell + o(\ln \ell / k \ell)$, provided that $\ell$ is bounded by a function that is $o(\exp(\sqrt[3]{k}))$. For the case where $d = \ell - k$ is fixed, this bound matches the performance of our algorithm up to $o(\ln \ell / k \ell)$. Furthermore, by extending the results of Guruswami and Sinop [ToC'13] to the promise setting, we prove that it is NP-hard to achieve an approximation ratio greater than $1 - 1 / \ell + 8 \ln \ell / k \ell + o(\ln \ell / k \ell)$, provided again that $\ell$ is bounded as before (but this time without assuming the UGC).
A graph is called a $(k,\rho)$-graph iff every node can reach $\rho$ of its nearest neighbors in at most k hops. This property proved useful in the analysis and design of parallel shortest-path algorithms. Any graph can be transformed into a $(k,\rho)$-graph by adding shortcuts. Formally, the $(k,\rho)$-Minimum-Shortcut problem asks to find an appropriate shortcut set of minimal cardinality. We show that the $(k,\rho)$-Minimum-Shortcut problem is NP-complete in the practical regime of $k \ge 3$ and $\rho = \Theta(n^\epsilon)$ for $\epsilon > 0$. With a related construction, we bound the approximation factor of known $(k,\rho)$-Minimum-Shortcut problem heuristics from below and propose algorithmic countermeasures improving the approximation quality. Further, we describe an integer linear problem (ILP) solving the $(k,\rho)$-Minimum-Shortcut problem optimally. Finally, we compare the practical performance and quality of all algorithms in an empirical campaign.
Continuous-time algebraic Riccati equations can be found in many disciplines in different forms. In the case of small-scale dense coefficient matrices, stabilizing solutions can be computed to all possible formulations of the Riccati equation. This is not the case when it comes to large-scale sparse coefficient matrices. In this paper, we provide a reformulation of the Newton-Kleinman iteration scheme for continuous-time algebraic Riccati equations using indefinite symmetric low-rank factorizations. This allows the application of the method to the case of general large-scale sparse coefficient matrices. We provide convergence results for several prominent realizations of the equation and show in numerical examples the effectiveness of the approach.
We demonstrate a multiplication method based on numbers represented as set of polynomial radix 2 indices stored as an integer list. The 'polynomial integer index multiplication' method is a set of algorithms implemented in python code. We demonstrate the method to be faster than both the Number Theoretic Transform (NTT) and Karatsuba for multiplication within a certain bit range. Also implemented in python code for comparison purposes with the polynomial radix 2 integer method. We demonstrate that it is possible to express any integer or real number as a list of integer indices, representing a finite series in base two. The finite series of integer index representation of a number can then be stored and distributed across multiple CPUs / GPUs. We show that operations of addition and multiplication can be applied as two's complement additions operating on the index integer representations and can be fully distributed across a given CPU / GPU architecture. We demonstrate fully distributed arithmetic operations such that the 'polynomial integer index multiplication' method overcomes the current limitation of parallel multiplication methods. Ie, the need to share common core memory and common disk for the calculation of results and intermediate results.