亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate the use of transformers for Neural Machine Translation of text-to-GLOSS for Deaf and Hard-of-Hearing communication. Due to the scarcity of available data and limited resources for text-to-GLOSS translation, we treat the problem as a low-resource language task. We use our novel hyper-parameter exploration technique to explore a variety of architectural parameters and build an optimal transformer-based architecture specifically tailored for text-to-GLOSS translation. The study aims to improve the accuracy and fluency of Neural Machine Translation generated GLOSS. This is achieved by examining various architectural parameters including layer count, attention heads, embedding dimension, dropout, and label smoothing to identify the optimal architecture for improving text-to-GLOSS translation performance. The experiments conducted on the PHOENIX14T dataset reveal that the optimal transformer architecture outperforms previous work on the same dataset. The best model reaches a ROUGE (Recall-Oriented Understudy for Gisting Evaluation) score of 55.18% and a BLEU-1 (BiLingual Evaluation Understudy 1) score of 63.6%, outperforming state-of-the-art results on the BLEU1 and ROUGE score by 8.42 and 0.63 respectively.

相關內容

We present an implementation of a Web3 platform that leverages the Groth16 Zero-Knowledge Proof schema to verify the validity of questionnaire results within Smart Contracts. Our approach ensures that the answer key of the questionnaire remains undisclosed throughout the verification process, while ensuring that the evaluation is done fairly. To accomplish this, users respond to a series of questions, and their answers are encoded and securely transmitted to a hidden backend. The backend then performs an evaluation of the user's answers, generating the overall result of the questionnaire. Additionally, it generates a Zero-Knowledge Proof, attesting that the answers were appropriately evaluated against a valid set of constraints. Next, the user submits their result along with the proof to a Smart Contract, which verifies their validity and issues a non-fungible token (NFT) as an attestation of the user's test result. In this research, we implemented the Zero-Knowledge functionality using Circom 2 and deployed the Smart Contract using Solidity, thereby showcasing a practical and secure solution for questionnaire validity verification in the context of Smart Contracts.

This paper is on the problem of Knowledge-Based Visual Question Answering (KB-VQA). Recent works have emphasized the significance of incorporating both explicit (through external databases) and implicit (through LLMs) knowledge to answer questions requiring external knowledge effectively. A common limitation of such approaches is that they consist of relatively complicated pipelines and often heavily rely on accessing GPT-3 API. Our main contribution in this paper is to propose a much simpler and readily reproducible pipeline which, in a nutshell, is based on efficient in-context learning by prompting LLaMA (1 and 2) using question-informative captions as contextual information. Contrary to recent approaches, our method is training-free, does not require access to external databases or APIs, and yet achieves state-of-the-art accuracy on the OK-VQA and A-OK-VQA datasets. Finally, we perform several ablation studies to understand important aspects of our method. Our code is publicly available at //github.com/alexandrosXe/ASimple-Baseline-For-Knowledge-Based-VQA

In this paper, we explore audio-editing with non-rigid text edits. We show that the proposed editing pipeline is able to create audio edits that remain faithful to the input audio. We explore text prompts that perform addition, style transfer, and in-painting. We quantitatively and qualitatively show that the edits are able to obtain results which outperform Audio-LDM, a recently released text-prompted audio generation model. Qualitative inspection of the results points out that the edits given by our approach remain more faithful to the input audio in terms of keeping the original onsets and offsets of the audio events.

In this paper, we propose a novel directed fuzzing solution named AFLRun, which features target path-diversity metric and unbiased energy assignment. Firstly, we develop a new coverage metric by maintaining extra virgin map for each covered target to track the coverage status of seeds that hit the target. This approach enables the storage of waypoints into the corpus that hit a target through interesting path, thus enriching the path diversity for each target. Additionally, we propose a corpus-level energy assignment strategy that guarantees fairness for each target. AFLRun starts with uniform target weight and propagates this weight to seeds to get a desired seed weight distribution. By assigning energy to each seed in the corpus according to such desired distribution, a precise and unbiased energy assignment can be achieved. We built a prototype system and assessed its performance using a standard benchmark and several extensively fuzzed real-world applications. The evaluation results demonstrate that AFLRun outperforms state-of-the-art fuzzers in terms of vulnerability detection, both in quantity and speed. Moreover, AFLRun uncovers 29 previously unidentified vulnerabilities, including 8 CVEs, across four distinct programs.

In this paper we present a fully distributed, asynchronous, and general purpose optimization algorithm for Consensus Simultaneous Localization and Mapping (CSLAM). Multi-robot teams require that agents have timely and accurate solutions to their state as well as the states of the other robots in the team. To optimize this solution we develop a CSLAM back-end based on Consensus ADMM called MESA (Manifold, Edge-based, Separable ADMM). MESA is fully distributed to tolerate failures of individual robots, asynchronous to tolerate practical network conditions, and general purpose to handle any CSLAM problem formulation. We demonstrate that MESA exhibits superior convergence rates and accuracy compare to existing state-of-the art CSLAM back-end optimizers.

This paper proposes a hybrid genetic algorithm for solving the Multiple Traveling Salesman Problem (mTSP) to minimize the length of the longest tour. The genetic algorithm utilizes a TSP sequence as the representation of each individual, and a dynamic programming algorithm is employed to evaluate the individual and find the optimal mTSP solution for the given sequence of cities. A novel crossover operator is designed to combine similar tours from two parents and offers great diversity for the population. For some of the generated offspring, we detect and remove intersections between tours to obtain a solution with no intersections. This is particularly useful for the min-max mTSP. The generated offspring are also improved by a self-adaptive random local search and a thorough neighborhood search. Our algorithm outperforms all existing algorithms on average, with similar cutoff time thresholds, when tested against multiple benchmark sets found in the literature. Additionally, we improve the best-known solutions for $21$ out of $89$ instances on four benchmark sets.

In this paper, we provide simpler reductions from Exact Triangle to two important problems in fine-grained complexity: Exact Triangle with Few Zero-Weight $4$-Cycles and All-Edges Sparse Triangle. Exact Triangle instances with few zero-weight $4$-cycles was considered by Jin and Xu [STOC 2023], who used it as an intermediate problem to show $3$SUM hardness of All-Edges Sparse Triangle with few $4$-cycles (independently obtained by Abboud, Bringmann and Fischer [STOC 2023]), which is further used to show $3$SUM hardness of a variety of problems, including $4$-Cycle Enumeration, Offline Approximate Distance Oracle, Dynamic Approximate Shortest Paths and All-Nodes Shortest Cycles. We provide a simple reduction from Exact Triangle to Exact Triangle with few zero-weight $4$-cycles. Our new reduction not only simplifies Jin and Xu's previous reduction, but also strengthens the conditional lower bounds from being under the $3$SUM hypothesis to the even more believable Exact Triangle hypothesis. As a result, all conditional lower bounds shown by Jin and Xu [STOC 2023] and by Abboud, Bringmann and Fischer [STOC 2023] using All-Edges Sparse Triangle with few $4$-cycles as an intermediate problem now also hold under the Exact Triangle hypothesis. We also provide two alternative proofs of the conditional lower bound of the All-Edges Sparse Triangle problem under the Exact Triangle hypothesis, which was originally proved by Vassilevska Williams and Xu [FOCS 2020]. Both of our new reductions are simpler, and one of them is also deterministic -- all previous reductions from Exact Triangle or 3SUM to All-Edges Sparse Triangle (including P\u{a}tra\c{s}cu's seminal work [STOC 2010]) were randomized.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司