亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The 3D Discrete Fourier Transform (DFT) is a technique used to solve problems in disparate fields. Nowadays, the commonly adopted implementation of the 3D-DFT is derived from the Fast Fourier Transform (FFT) algorithm. However, evidence indicates that the distributed memory 3D-FFT algorithm does not scale well due to its use of all-to-all communication. Here, building on the work of Sedukhin \textit{et al}. [Proceedings of the 30th International Conference on Computers and Their Applications, CATA 2015 pp. 193-200 (01 2015)], we revisit the possibility of improving the scaling of the 3D-DFT by using an alternative approach that uses point-to-point communication, albeit at a higher arithmetic complexity. The new algorithm exploits tensor-matrix multiplications on a volumetrically decomposed domain via three specially adapted variants of Cannon's algorithm. It has here been implemented as a C++ library called S3DFT and tested on the JUWELS Cluster at the J\"ulich Supercomputing Center. Our implementation of the shared memory tensor-matrix multiplication attained 88\% of the theoretical single node peak performance. One variant of the distributed memory tensor-matrix multiplication shows excellent scaling, while the other two show poorer performance, which can be attributed to their intrinsic communication patterns. A comparison of S3DFT with the Intel MKL and FFTW3 libraries indicates that currently iMKL performs best overall, followed in order by FFTW3 and S3DFT. This picture might change with further improvements of the algorithm and/or when running on clusters that use network connections with higher latency, e.g. on cloud platforms.

相關內容

Communication compression is an essential strategy for alleviating communication overhead by reducing the volume of information exchanged between computing nodes in large-scale distributed stochastic optimization. Although numerous algorithms with convergence guarantees have been obtained, the optimal performance limit under communication compression remains unclear. In this paper, we investigate the performance limit of distributed stochastic optimization algorithms employing communication compression. We focus on two main types of compressors, unbiased and contractive, and address the best-possible convergence rates one can obtain with these compressors. We establish the lower bounds for the convergence rates of distributed stochastic optimization in six different settings, combining strongly-convex, generally-convex, or non-convex functions with unbiased or contractive compressor types. To bridge the gap between lower bounds and existing algorithms' rates, we propose NEOLITHIC, a nearly optimal algorithm with compression that achieves the established lower bounds up to logarithmic factors under mild conditions. Extensive experimental results support our theoretical findings. This work provides insights into the theoretical limitations of existing compressors and motivates further research into fundamentally new compressor properties.

In conventional backscatter communication (BackCom) systems, time division multiple access (TDMA) and frequency division multiple access (FDMA) are generally adopted for multiuser backscattering due to their simplicity in implementation. However, as the number of backscatter devices (BDs) proliferates, there will be a high overhead under the traditional centralized control techniques, and the inter-user coordination is unaffordable for the passive BDs, which are of scarce concern in existing works and remain unsolved. To this end, in this paper, we propose a slotted ALOHA-based random access for BackCom systems, in which each BD is randomly chosen and is allowed to coexist with one active device for hybrid multiple access. To excavate and evaluate the performance, a resource allocation problem for max-min transmission rate is formulated, where transmit antenna selection, receive beamforming design, reflection coefficient adjustment, power control, and access probability determination are jointly considered. To deal with this intractable problem, we first transform the objective function with the max-min form into an equivalent linear one, and then decompose the resulting problem into three sub-problems. Next, a block coordinate descent (BCD)-based greedy algorithm with a penalty function, successive convex approximation, and linear programming are designed to obtain sub-optimal solutions for tractable analysis. Simulation results demonstrate that the proposed algorithm outperforms benchmark algorithms in terms of transmission rate and fairness.

Kronecker regression is a highly-structured least squares problem $\min_{\mathbf{x}} \lVert \mathbf{K}\mathbf{x} - \mathbf{b} \rVert_{2}^2$, where the design matrix $\mathbf{K} = \mathbf{A}^{(1)} \otimes \cdots \otimes \mathbf{A}^{(N)}$ is a Kronecker product of factor matrices. This regression problem arises in each step of the widely-used alternating least squares (ALS) algorithm for computing the Tucker decomposition of a tensor. We present the first subquadratic-time algorithm for solving Kronecker regression to a $(1+\varepsilon)$-approximation that avoids the exponential term $O(\varepsilon^{-N})$ in the running time. Our techniques combine leverage score sampling and iterative methods. By extending our approach to block-design matrices where one block is a Kronecker product, we also achieve subquadratic-time algorithms for (1) Kronecker ridge regression and (2) updating the factor matrices of a Tucker decomposition in ALS, which is not a pure Kronecker regression problem, thereby improving the running time of all steps of Tucker ALS. We demonstrate the speed and accuracy of this Kronecker regression algorithm on synthetic data and real-world image tensors.

This paper presents $\mathrm{E}(n)$ Equivariant Message Passing Simplicial Networks (EMPSNs), a novel approach to learning on geometric graphs and point clouds that is equivariant to rotations, translations, and reflections. EMPSNs can learn high-dimensional simplex features in graphs (e.g. triangles), and use the increase of geometric information of higher-dimensional simplices in an $\mathrm{E}(n)$ equivariant fashion. EMPSNs simultaneously generalize $\mathrm{E}(n)$ Equivariant Graph Neural Networks to a topologically more elaborate counterpart and provide an approach for including geometric information in Message Passing Simplicial Networks. The results indicate that EMPSNs can leverage the benefits of both approaches, leading to a general increase in performance when compared to either method. Furthermore, the results suggest that incorporating geometric information serves as an effective measure against over-smoothing in message passing networks, especially when operating on high-dimensional simplicial structures. Last, we show that EMPSNs are on par with state-of-the-art approaches for learning on geometric graphs.

Real-time perception and motion planning are two crucial tasks for autonomous driving. While there are many research works focused on improving the performance of perception and motion planning individually, it is still not clear how a perception error may adversely impact the motion planning results. In this work, we propose a joint simulation framework with LiDAR-based perception and motion planning for real-time automated driving. Taking the sensor input from the CARLA simulator with additive noise, a LiDAR perception system is designed to detect and track all surrounding vehicles and to provide precise orientation and velocity information. Next, we introduce a new collision bound representation that relaxes the communication cost between the perception module and the motion planner. A novel collision checking algorithm is implemented using line intersection checking that is more efficient for long distance range in comparing to the traditional method of occupancy grid. We evaluate the joint simulation framework in CARLA for urban driving scenarios. Experiments show that our proposed automated driving system can execute at 25 Hz, which meets the real-time requirement. The LiDAR perception system has high accuracy within 20 meters when evaluated with the ground truth. The motion planning results in consistent safe distance keeping when tested in CARLA urban driving scenarios.

In semantic communications, only task-relevant information is transmitted, yielding significant performance gains over conventional communications. To satisfy user requirements for different tasks, we investigate the semantic-aware resource allocation in a multi-cell network for serving multiple tasks in this paper. First, semantic entropy is defined and quantified to measure the semantic information for different tasks. Then, we develop a novel quality-of-experience (QoE) model to formulate the semantic-aware resource allocation problem in terms of semantic compression, channel assignment, and transmit power allocation. To solve the formulated problem, we first decouple it into two subproblems. The first one is to optimize semantic compression with given channel assignment and power allocation results, which is solved by a developed deep Q-network (DQN) based method. The second one is to optimize the channel assignment and transmit power, which is modeled as a many-to-one matching game and solved by a proposed low-complexity matching algorithm. Simulation results validate the effectiveness and superiority of the proposed semantic-aware resource allocation method, as well as its compatibility with conventional and semantic communications.

Low-rank matrix estimation under heavy-tailed noise is challenging, both computationally and statistically. Convex approaches have been proven statistically optimal but suffer from high computational costs, especially since robust loss functions are usually non-smooth. More recently, computationally fast non-convex approaches via sub-gradient descent are proposed, which, unfortunately, fail to deliver a statistically consistent estimator even under sub-Gaussian noise. In this paper, we introduce a novel Riemannian sub-gradient (RsGrad) algorithm which is not only computationally efficient with linear convergence but also is statistically optimal, be the noise Gaussian or heavy-tailed. Convergence theory is established for a general framework and specific applications to absolute loss, Huber loss, and quantile loss are investigated. Compared with existing non-convex methods, ours reveals a surprising phenomenon of dual-phase convergence. In phase one, RsGrad behaves as in a typical non-smooth optimization that requires gradually decaying stepsizes. However, phase one only delivers a statistically sub-optimal estimator which is already observed in the existing literature. Interestingly, during phase two, RsGrad converges linearly as if minimizing a smooth and strongly convex objective function and thus a constant stepsize suffices. Underlying the phase-two convergence is the smoothing effect of random noise to the non-smooth robust losses in an area close but not too close to the truth. Lastly, RsGrad is applicable for low-rank tensor estimation under heavy-tailed noise where a statistically optimal rate is attainable with the same phenomenon of dual-phase convergence, and a novel shrinkage-based second-order moment method is guaranteed to deliver a warm initialization. Numerical simulations confirm our theoretical discovery and showcase the superiority of RsGrad over prior methods.

This paper discusses congestion control and inconsistency problems in DAG-based distributed ledgers and proposes an additional filter to mitigate these issues. Unlike traditional blockchains, DAG-based DLTs use a directed acyclic graph structure to organize transactions, allowing higher scalability and efficiency. However, this also introduces challenges in controlling the rate at which blocks are added to the network and preventing the influence of spam attacks. To address these challenges, we propose a filter to limit the tip pool size and to avoid referencing old blocks. Furthermore, we present experimental results to demonstrate the effectiveness of this filter in reducing the negative impacts of various attacks. Our approach offers a lightweight and efficient solution for managing the flow of blocks in DAG-based DLTs, which can enhance the consistency and reliability of these systems. Index

In this work, following the Discrete de Rham (DDR) paradigm, we develop an arbitrary-order discrete divdiv complex on general polyhedral meshes. The construction rests 1) on discrete spaces that are spanned by vectors of polynomials whose components are attached to mesh entities and 2) on discrete operators obtained mimicking integration by parts formulas. We provide an in-depth study of the algebraic properties of the local complex, showing that it is exact on mesh elements with trivial topology. The new DDR complex is used to design a numerical scheme for the approximation of biharmonic problems, for which we provide detailed stability and convergence analyses.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

北京阿比特科技有限公司