亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Low-rank matrix estimation under heavy-tailed noise is challenging, both computationally and statistically. Convex approaches have been proven statistically optimal but suffer from high computational costs, especially since robust loss functions are usually non-smooth. More recently, computationally fast non-convex approaches via sub-gradient descent are proposed, which, unfortunately, fail to deliver a statistically consistent estimator even under sub-Gaussian noise. In this paper, we introduce a novel Riemannian sub-gradient (RsGrad) algorithm which is not only computationally efficient with linear convergence but also is statistically optimal, be the noise Gaussian or heavy-tailed. Convergence theory is established for a general framework and specific applications to absolute loss, Huber loss, and quantile loss are investigated. Compared with existing non-convex methods, ours reveals a surprising phenomenon of dual-phase convergence. In phase one, RsGrad behaves as in a typical non-smooth optimization that requires gradually decaying stepsizes. However, phase one only delivers a statistically sub-optimal estimator which is already observed in the existing literature. Interestingly, during phase two, RsGrad converges linearly as if minimizing a smooth and strongly convex objective function and thus a constant stepsize suffices. Underlying the phase-two convergence is the smoothing effect of random noise to the non-smooth robust losses in an area close but not too close to the truth. Lastly, RsGrad is applicable for low-rank tensor estimation under heavy-tailed noise where a statistically optimal rate is attainable with the same phenomenon of dual-phase convergence, and a novel shrinkage-based second-order moment method is guaranteed to deliver a warm initialization. Numerical simulations confirm our theoretical discovery and showcase the superiority of RsGrad over prior methods.

相關內容

We propose and analyze an approximate message passing (AMP) algorithm for the matrix tensor product model, which is a generalization of the standard spiked matrix models that allows for multiple types of pairwise observations over a collection of latent variables. A key innovation for this algorithm is a method for optimally weighing and combining multiple estimates in each iteration. Building upon an AMP convergence theorem for non-separable functions, we prove a state evolution for non-separable functions that provides an asymptotically exact description of its performance in the high-dimensional limit. We leverage this state evolution result to provide necessary and sufficient conditions for recovery of the signal of interest. Such conditions depend on the singular values of a linear operator derived from an appropriate generalization of a signal-to-noise ratio for our model. Our results recover as special cases a number of recently proposed methods for contextual models (e.g., covariate assisted clustering) as well as inhomogeneous noise models.

We introduce a pressure robust Finite Element Method for the linearized Magnetohydrodynamics equations in three space dimensions, which is provably quasi-robust also in the presence of high fluid and magnetic Reynolds numbers. The proposed scheme uses a non-conforming BDM approach with suitable DG terms for the fluid part, combined with an $H^1$-conforming choice for the magnetic fluxes. The method introduces also a specific CIP-type stabilization associated to the coupling terms. Finally, the theoretical result are further validated by numerical experiments.

We study energy-efficient offloading strategies in a large-scale MEC system with heterogeneous mobile users and network components. The system is considered with enabled user-task handovers that capture the mobility of various mobile users. We focus on a long-run objective and online algorithms that are applicable to realistic systems. The problem is significantly complicated by the large problem size, the heterogeneity of user tasks and network components, and the mobility of the users, for which conventional optimizers cannot reach optimum with a reasonable amount of computational and storage power. We formulate the problem in the vein of the restless multi-armed bandit process that enables the decomposition of high-dimensional state spaces and then achieves near-optimal algorithms applicable to realistically large problems in an online manner. Following the restless bandit technique, we propose two offloading policies by prioritizing the least marginal costs of selecting the corresponding computing and communication resources in the edge and cloud networks. This coincides with selecting the resources with the highest energy efficiency. Both policies are scalable to the offloading problem with a great potential to achieve proved asymptotic optimality - approach optimality as the problem size tends to infinity. With extensive numerical simulations, the proposed policies are demonstrated to clearly outperform baseline policies with respect to power conservation and robust to the tested heavy-tailed lifespan distributions of the offloaded tasks.

Missing data is frequently encountered in many areas of statistics. Imputation and propensity score weighting are two popular methods for handling missing data. These methods employ some model assumptions, either the outcome regression or the response propensity model. However, correct specification of the statistical model can be challenging in the presence of missing data. Doubly robust estimation is attractive as the consistency of the estimator is guaranteed when either the outcome regression model or the propensity score model is correctly specified. In this paper, we first employ information projection to develop an efficient and doubly robust estimator under indirect model calibration constraints. The resulting propensity score estimator can be equivalently expressed as a doubly robust regression imputation estimator by imposing the internal bias calibration condition in estimating the regression parameters. In addition, we generalize the information projection to allow for outlier-robust estimation. Thus, we achieve triply robust estimation by adding the outlier robustness condition to the double robustness condition. Some asymptotic properties are presented. The simulation study confirms that the proposed method allows robust inference against not only the violation of various model assumptions, but also outliers.

Consider a random sample $(X_{1},\ldots,X_{n})$ from an unknown discrete distribution $P=\sum_{j\geq1}p_{j}\delta_{s_{j}}$ on a countable alphabet $\mathbb{S}$, and let $(Y_{n,j})_{j\geq1}$ be the empirical frequencies of distinct symbols $s_{j}$'s in the sample. We consider the problem of estimating the $r$-order missing mass, which is a discrete functional of $P$ defined as $$\theta_{r}(P;\mathbf{X}_{n})=\sum_{j\geq1}p^{r}_{j}I(Y_{n,j}=0).$$ This is generalization of the missing mass whose estimation is a classical problem in statistics, being the subject of numerous studies both in theory and methods. First, we introduce a nonparametric estimator of $\theta_{r}(P;\mathbf{X}_{n})$ and a corresponding non-asymptotic confidence interval through concentration properties of $\theta_{r}(P;\mathbf{X}_{n})$. Then, we investigate minimax estimation of $\theta_{r}(P;\mathbf{X}_{n})$, which is the main contribution of our work. We show that minimax estimation is not feasible over the class of all discrete distributions on $\mathbb{S}$, and not even for distributions with regularly varying tails, which only guarantee that our estimator is consistent for $\theta_{r}(P;\mathbf{X}_{n})$. This leads to introduce the stronger assumption of second-order regular variation for the tail behaviour of $P$, which is proved to be sufficient for minimax estimation of $\theta_r(P;\mathbf{X}_{n})$, making the proposed estimator an optimal minimax estimator of $\theta_{r}(P;\mathbf{X}_{n})$. Our interest in the $r$-order missing mass arises from forensic statistics, where the estimation of the $2$-order missing mass appears in connection to the estimation of the likelihood ratio $T(P,\mathbf{X}_{n})=\theta_{1}(P;\mathbf{X}_{n})/\theta_{2}(P;\mathbf{X}_{n})$, known as the "fundamental problem of forensic mathematics". We present theoretical guarantees to nonparametric estimation of $T(P,\mathbf{X}_{n})$.

We study statistical inference for the optimal transport (OT) map (also known as the Brenier map) from a known absolutely continuous reference distribution onto an unknown finitely discrete target distribution. We derive limit distributions for the $L^p$-error with arbitrary $p \in [1,\infty)$ and for linear functionals of the empirical OT map, together with their moment convergence. The former has a non-Gaussian limit, whose explicit density is derived, while the latter attains asymptotic normality. For both cases, we also establish consistency of the nonparametric bootstrap. The derivation of our limit theorems relies on new stability estimates of functionals of the OT map with respect to the dual potential vector, which may be of independent interest. We also discuss applications of our limit theorems to the construction of confidence sets for the OT map and inference for a maximum tail correlation.

In multivariate time series analysis, the coherence measures the linear dependency between two-time series at different frequencies. However, real data applications often exhibit nonlinear dependency in the frequency domain. Conventional coherence analysis fails to capture such dependency. The quantile coherence, on the other hand, characterizes nonlinear dependency by defining the coherence at a set of quantile levels based on trigonometric quantile regression. Although quantile coherence is a more powerful tool, its estimation remains challenging due to the high level of noise. This paper introduces a new estimation technique for quantile coherence. The proposed method is semi-parametric, which uses the parametric form of the spectrum of the vector autoregressive (VAR) model as an approximation to the quantile spectral matrix, along with nonparametric smoothing across quantiles. For each fixed quantile level, we obtain the VAR parameters from the quantile periodograms, then, using the Durbin-Levinson algorithm, we calculate the preliminary estimate of quantile coherence using the VAR parameters. Finally, we smooth the preliminary estimate of quantile coherence across quantiles using a nonparametric smoother. Numerical results show that the proposed estimation method outperforms nonparametric methods. We show that quantile coherence-based bivariate time series clustering has advantages over the ordinary VAR coherence. For applications, the identified clusters of financial stocks by quantile coherence with a market benchmark are shown to have an intriguing and more accurate structure of diversified investment portfolios that may be used by investors to make better decisions.

Unobserved confounding is a fundamental obstacle to establishing valid causal conclusions from observational data. Two complementary types of approaches have been developed to address this obstacle: obtaining identification using fortuitous external aids, such as instrumental variables or proxies, or by means of the ID algorithm, using Markov restrictions on the full data distribution encoded in graphical causal models. In this paper we aim to develop a synthesis of the former and latter approaches to identification in causal inference to yield the most general identification algorithm in multivariate systems currently known -- the proximal ID algorithm. In addition to being able to obtain nonparametric identification in all cases where the ID algorithm succeeds, our approach allows us to systematically exploit proxies to adjust for the presence of unobserved confounders that would have otherwise prevented identification. In addition, we outline a class of estimation strategies for causal parameters identified by our method in an important special case. We illustrate our approach by simulation studies and a data application.

Entropic optimal transport (EOT) presents an effective and computationally viable alternative to unregularized optimal transport (OT), offering diverse applications for large-scale data analysis. In this work, we derive novel statistical bounds for empirical plug-in estimators of the EOT cost and show that their statistical performance in the entropy regularization parameter $\epsilon$ and the sample size $n$ only depends on the simpler of the two probability measures. For instance, under sufficiently smooth costs this yields the parametric rate $n^{-1/2}$ with factor $\epsilon^{-d/2}$, where $d$ is the minimum dimension of the two population measures. This confirms that empirical EOT also adheres to the lower complexity adaptation principle, a hallmark feature only recently identified for unregularized OT. As a consequence of our theory, we show that the empirical entropic Gromov-Wasserstein distance and its unregularized version for measures on Euclidean spaces also obey this principle. Additionally, we comment on computational aspects and complement our findings with Monte Carlo simulations. Our techniques employ empirical process theory and rely on a dual formulation of EOT over a single function class. Crucial to our analysis is the observation that the entropic cost-transformation of a function class does not increase its uniform metric entropy by much.

This paper presents a novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. We show mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach we provide a generalization of the multivariate Whittle-likelihood-based method of Meier et al. (2020) as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of Kirch et al. (2019) to the multivariate case. We demonstrate that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. We illustrate its practical advantages by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and time series of windspeed data at six locations in California.

北京阿比特科技有限公司