亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Educational Data Mining (EDM) has emerged as a vital field of research, which harnesses the power of computational techniques to analyze educational data. With the increasing complexity and diversity of educational data, Deep Learning techniques have shown significant advantages in addressing the challenges associated with analyzing and modeling this data. This survey aims to systematically review the state-of-the-art in EDM with Deep Learning. We begin by providing a brief introduction to EDM and Deep Learning, highlighting their relevance in the context of modern education. Next, we present a detailed review of Deep Learning techniques applied in four typical educational scenarios, including knowledge tracing, undesirable student detecting, performance prediction, and personalized recommendation. Furthermore, a comprehensive overview of public datasets and processing tools for EDM is provided. Finally, we point out emerging trends and future directions in this research area.

相關內容

With the growing interest in Machine Learning (ML), Graphic Processing Units (GPUs) have become key elements of any computing infrastructure. Their widespread deployment in data centers and the cloud raises the question of how to use them beyond ML use cases, with growing interest in employing them in a database context. In this paper, we explore and analyze the implementation of relational joins on GPUs from an end-to-end perspective, meaning that we take result materialization into account. We conduct a comprehensive performance study of state-of-the-art GPU-based join algorithms over diverse synthetic workloads and TPC-H/TPC-DS benchmarks. Without being restricted to the conventional setting where each input relation has only one key and one non-key with all attributes being 4-bytes long, we investigate the effect of various factors (e.g., input sizes, number of non-key columns, skewness, data types, match ratios, and number of joins) on the end-to-end throughput. Furthermore, we propose a technique called "Gather-from-Transformed-Relations" (GFTR) to reduce the long-ignored yet high materialization cost in GPU-based joins. The experimental evaluation shows significant performance improvements from GFTR, with throughput gains of up to 2.3 times over previous work. The insights gained from the performance study not only advance the understanding of GPU-based joins but also introduce a structured approach to selecting the most efficient GPU join algorithm based on the input relation characteristics.

Synthetic control (SC) methods have gained rapid popularity in economics recently, where they have been applied in the context of inferring the effects of treatments on standard continuous outcomes assuming linear input-output relations. In medical applications, conversely, survival outcomes are often of primary interest, a setup in which both commonly assumed data-generating processes (DGPs) and target parameters are different. In this paper, we therefore investigate whether and when SCs could serve as an alternative to matching methods in survival analyses. We find that, because SCs rely on a linearity assumption, they will generally be biased for the true expected survival time in commonly assumed survival DGPs -- even when taking into account the possibility of linearity on another scale as in accelerated failure time models. Additionally, we find that, because SC units follow distributions with lower variance than real control units, summaries of their distributions, such as survival curves, will be biased for the parameters of interest in many survival analyses. Nonetheless, we also highlight that using SCs can still improve upon matching whenever the biases described above are outweighed by extrapolation biases exhibited by imperfect matches, and investigate the use of regularization to trade off the shortcomings of both approaches.

Spectrum sensing technology is a crucial aspect of modern communication technology, serving as one of the essential techniques for efficiently utilizing scarce information resources in tight frequency bands. This paper first introduces three common logical circuit decision criteria in hard decisions and analyzes their decision rigor. Building upon hard decisions, the paper further introduces a method for multi-user spectrum sensing based on soft decisions. Then the paper simulates the false alarm probability and detection probability curves corresponding to the three criteria. The simulated results of multi-user collaborative sensing indicate that the simulation process significantly reduces false alarm probability and enhances detection probability. This approach effectively detects spectrum resources unoccupied during idle periods, leveraging the concept of time-division multiplexing and rationalizing the redistribution of information resources. The entire computation process relies on the calculation principles of power spectral density in communication theory, involving threshold decision detection for noise power and the sum of noise and signal power. It provides a secondary decision detection, reflecting the perceptual decision performance of logical detection methods with relative accuracy.

With the proliferation of edge computing, efficient AI inference on edge devices has become essential for intelligent applications such as autonomous vehicles and VR/AR. In this context, we address the problem of efficient remote object recognition by optimizing feature transmission between mobile devices and edge servers. We propose an online optimization framework to address the challenge of dynamic channel conditions and device mobility in an end-to-end communication system. Our approach builds upon existing methods by leveraging a semantic knowledge base to drive multi-level feature transmission, accounting for temporal factors and dynamic elements throughout the transmission process. To solve the online optimization problem, we design a novel soft actor-critic-based deep reinforcement learning system with a carefully designed reward function for real-time decision-making, overcoming the optimization difficulty of the NP-hard problem and achieving the minimization of semantic loss while respecting latency constraints. Numerical results showcase the superiority of our approach compared to traditional greedy methods under various system setups.

Aiming at analyzing performance in cloud computing, some unpredictable perturbations which may lead to performance downgrade are essential factors that should not be neglected. To avoid performance downgrade in cloud computing system, it is reasonable to measure the impact of the perturbations, and further propose a robust scheduling strategy to maintain the performance of the system at an acceptable level. In this paper, we first describe the supply-demand relationship of service between cloud service providers and customers, in which the profit and waiting time are objectives they most concerned. Then, on the basis of introducing the lowest acceptable profit and longest acceptable waiting time for cloud service providers and customers respectively, we define a robustness metric method to declare that the number and speed of servers should be adequately configured in a feasible region, such that the performance of cloud computing system can stay at an acceptable level when it is subject to the perturbations. Subsequently, we discuss the robustness metric method in several cases, and propose heuristic optimization algorithm to enhance the robustness of the system as much as possible. At last, the performances of the proposed algorithm are validated by comparing with DE and PSO algorithm, the results show the superiority of the proposed algorithm.

Federated Learning (FL) has been proposed as a privacy-preserving solution for machine learning. However, recent works have shown that Federated Learning can leak private client data through membership attacks. In this paper, we show that the effectiveness of these attacks on the clients negatively correlates with the size of the client datasets and model complexity. Based on this finding, we propose model-agnostic Federated Learning as a privacy-enhancing solution because it enables the use of models of varying complexity in the clients. To this end, we present $\texttt{MaPP-FL}$, a novel privacy-aware FL approach that leverages model compression on the clients while keeping a full model on the server. We compare the performance of $\texttt{MaPP-FL}$ against state-of-the-art model-agnostic FL methods on the CIFAR-10, CIFAR-100, and FEMNIST vision datasets. Our experiments show the effectiveness of $\texttt{MaPP-FL}$ in preserving the clients' and the server's privacy while achieving competitive classification accuracies.

Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

北京阿比特科技有限公司