Two-sample testing tests whether the distributions generating two samples are identical. We pose the two-sample testing problem in a new scenario where the sample measurements (or sample features) are inexpensive to access, but their group memberships (or labels) are costly. We devise the first \emph{active sequential two-sample testing framework} that not only sequentially but also \emph{actively queries} sample labels to address the problem. Our test statistic is a likelihood ratio where one likelihood is found by maximization over all class priors, and the other is given by a classification model. The classification model is adaptively updated and then used to guide an active query scheme called bimodal query to label sample features in the regions with high dependency between the feature variables and the label variables. The theoretical contributions in the paper include proof that our framework produces an \emph{anytime-valid} $p$-value; and, under reachable conditions and a mild assumption, the framework asymptotically generates a minimum normalized log-likelihood ratio statistic that a passive query scheme can only achieve when the feature variable and the label variable have the highest dependence. Lastly, we provide a \emph{query-switching (QS)} algorithm to decide when to switch from passive query to active query and adapt bimodal query to increase the testing power of our test. Extensive experiments justify our theoretical contributions and the effectiveness of QS.
In the past decade, the technology industry has adopted online randomized controlled experiments (a.k.a. A/B testing) to guide product development and make business decisions. In practice, A/B tests are often implemented with increasing treatment allocation: the new treatment is gradually released to an increasing number of units through a sequence of randomized experiments. In scenarios such as experimenting in a social network setting or in a bipartite online marketplace, interference among units may exist, which can harm the validity of simple inference procedures. In this work, we introduce a widely applicable procedure to test for interference in A/B testing with increasing allocation. Our procedure can be implemented on top of an existing A/B testing platform with a separate flow and does not require a priori a specific interference mechanism. In particular, we introduce two permutation tests that are valid under different assumptions. Firstly, we introduce a general statistical test for interference requiring no additional assumption. Secondly, we introduce a testing procedure that is valid under a time fixed effect assumption. The testing procedure is of very low computational complexity, it is powerful, and it formalizes a heuristic algorithm implemented already in industry. We demonstrate the performance of the proposed testing procedure through simulations on synthetic data. Finally, we discuss one application at LinkedIn, where a screening step is implemented to detect potential interference in all their marketplace experiments with the proposed methods in the paper.
Few-shot learning is a challenging problem since only a few examples are provided to recognize a new class. Several recent studies exploit additional semantic information, e.g. text embeddings of class names, to address the issue of rare samples through combining semantic prototypes with visual prototypes. However, these methods still suffer from the spurious visual features learned from the rare support samples, resulting in limited benefits. In this paper, we propose a novel Semantic Prompt (SP) approach for few-shot learning. Instead of the naive exploitation of semantic information for remedying classifiers, we explore leveraging semantic information as prompts to tune the visual feature extraction network adaptively. Specifically, we design two complementary mechanisms to insert semantic prompts into the feature extractor: one is to enable the interaction between semantic prompts and patch embeddings along the spatial dimension via self-attention, another is to supplement visual features with the transformed semantic prompts along the channel dimension. By combining these two mechanisms, the feature extractor presents a better ability to attend to the class-specific features and obtains more generalized image representations with merely a few support samples. Through extensive experiments on four datasets, the proposed approach achieves promising results, improving the 1-shot learning accuracy by 3.67% on average.
In the task of predicting spatio-temporal fields in environmental science using statistical methods, introducing statistical models inspired by the physics of the underlying phenomena that are numerically efficient is of growing interest. Large space-time datasets call for new numerical methods to efficiently process them. The Stochastic Partial Differential Equation (SPDE) approach has proven to be effective for the estimation and the prediction in a spatial context. We present here the advection-diffusion SPDE with first order derivative in time which defines a large class of nonseparable spatio-temporal models. A Gaussian Markov random field approximation of the solution to the SPDE is built by discretizing the temporal derivative with a finite difference method (implicit Euler) and by solving the spatial SPDE with a finite element method (continuous Galerkin) at each time step. The ''Streamline Diffusion'' stabilization technique is introduced when the advection term dominates the diffusion. Computationally efficient methods are proposed to estimate the parameters of the SPDE and to predict the spatio-temporal field by kriging, as well as to perform conditional simulations. The approach is applied to a solar radiation dataset. Its advantages and limitations are discussed.
Understanding variable dependence, particularly eliciting their statistical properties given a set of covariates, provides the mathematical foundation in practical operations management such as risk analysis and decision making given observed circumstances. This article presents an estimation method for modeling the conditional joint distribution of bivariate outcomes based on the distribution regression and factorization methods. This method is considered semiparametric in that it allows for flexible modeling of both the marginal and joint distributions conditional on covariates without imposing global parametric assumptions across the entire distribution. In contrast to existing parametric approaches, our method can accommodate discrete, continuous, or mixed variables, and provides a simple yet effective way to capture distributional dependence structures between bivariate outcomes and covariates. Various simulation results confirm that our method can perform similarly or better in finite samples compared to the alternative methods. In an application to the study of a motor third-part liability insurance portfolio, the proposed method effectively estimates risk measures such as the conditional Value-at-Risks and Expexted Sortfall. This result suggests that this semiparametric approach can serve as an alternative in insurance risk management.
Causal phenomena associated with rare events occur across a wide range of engineering problems, such as risk-sensitive safety analysis, accident analysis and prevention, and extreme value theory. However, current methods for causal discovery are often unable to uncover causal links, between random variables in a dynamic setting, that manifest only when the variables first experience low-probability realizations. To address this issue, we introduce a novel statistical independence test on data collected from time-invariant dynamical systems in which rare but consequential events occur. In particular, we exploit the time-invariance of the underlying data to construct a superimposed dataset of the system state before rare events happen at different timesteps. We then design a conditional independence test on the reorganized data. We provide non-asymptotic sample complexity bounds for the consistency of our method, and validate its performance across various simulated and real-world datasets, including incident data collected from the Caltrans Performance Measurement System (PeMS). Code containing the datasets and experiments is publicly available.
The Internet has turned the entire world into a small village;this is because it has made it possible to share millions of images and videos. However, sending and receiving a huge amount of data is considered to be a main challenge. To address this issue, a new algorithm is required to reduce image bits and represent the data in a compressed form. Nevertheless, image compression is an important application for transferring large files and images. This requires appropriate and efficient transfers in this field to achieve the task and reach the best results. In this work, we propose a new algorithm based on discrete Hermite wavelets transformation (DHWT) that shows the efficiency and quality of the color images. By compressing the color image, this method analyzes it and divides it into approximate coefficients and detail coefficients after adding the wavelets into MATLAB. With Multi-Resolution Analyses (MRA), the appropriate filter is derived, and the mathematical aspects prove to be validated by testing a new filter and performing its operation. After the decomposition of the rows and upon the process of the reconstruction, taking the inverse of the filter and dealing with the columns of the matrix, the original matrix is improved by measuring the parameters of the image to achieve the best quality of the resulting image, such as the peak signal-to-noise ratio (PSNR), compression ratio (CR), bits per pixel (BPP), and mean square error (MSE).
In media industry, the demand of SDR-to-HDRTV up-conversion arises when users possess HDR-WCG (high dynamic range-wide color gamut) TVs while most off-the-shelf footage is still in SDR (standard dynamic range). The research community has started tackling this low-level vision task by learning-based approaches. When applied to real SDR, yet, current methods tend to produce dim and desaturated result, making nearly no improvement on viewing experience. Different from other network-oriented methods, we attribute such deficiency to training set (HDR-SDR pair). Consequently, we propose new HDRTV dataset (dubbed HDRTV4K) and new HDR-to-SDR degradation models. Then, it's used to train a luminance-segmented network (LSN) consisting of a global mapping trunk, and two Transformer branches on bright and dark luminance range. We also update assessment criteria by tailored metrics and subjective experiment. Finally, ablation studies are conducted to prove the effectiveness. Our work is available at: //github.com/AndreGuo/HDRTVDM.
Considering a conversation thread, stance classification aims to identify the opinion (e.g. agree or disagree) of replies towards a given target. The target of the stance is expected to be an essential component in this task, being one of the main factors that make it different from sentiment analysis. However, a recent study shows that a target-oblivious model outperforms target-aware models, suggesting that targets are not useful when predicting stance. This paper re-examines this phenomenon for rumour stance classification (RSC) on social media, where a target is a rumour story implied by the source tweet in the conversation. We propose adversarial attacks in the test data, aiming to assess the models robustness and evaluate the role of the data in the models performance. Results show that state-of-the-art models, including approaches that use the entire conversation thread, overly relying on superficial signals. Our hypothesis is that the naturally high occurrence of target-independent direct replies in RSC (e.g. "this is fake" or just "fake") results in the impressive performance of target-oblivious models, highlighting the risk of target instances being treated as noise during training.
To address the challenges of long-tailed classification, researchers have proposed several approaches to reduce model bias, most of which assume that classes with few samples are weak classes. However, recent studies have shown that tail classes are not always hard to learn, and model bias has been observed on sample-balanced datasets, suggesting the existence of other factors that affect model bias. In this work, we systematically propose a series of geometric measurements for perceptual manifolds in deep neural networks, and then explore the effect of the geometric characteristics of perceptual manifolds on classification difficulty and how learning shapes the geometric characteristics of perceptual manifolds. An unanticipated finding is that the correlation between the class accuracy and the separation degree of perceptual manifolds gradually decreases during training, while the negative correlation with the curvature gradually increases, implying that curvature imbalance leads to model bias. Therefore, we propose curvature regularization to facilitate the model to learn curvature-balanced and flatter perceptual manifolds. Evaluations on multiple long-tailed and non-long-tailed datasets show the excellent performance and exciting generality of our approach, especially in achieving significant performance improvements based on current state-of-the-art techniques. Our work opens up a geometric analysis perspective on model bias and reminds researchers to pay attention to model bias on non-long-tailed and even sample-balanced datasets. The code and model will be made public.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.