A new Las Vegas algorithm is presented for the composition of two polynomials modulo a third one, over an arbitrary field. When the degrees of these polynomials are bounded by $n$, the algorithm uses $O(n^{1.43})$ field operations, breaking through the $3/2$ barrier in the exponent for the first time. The previous fastest algebraic algorithms, due to Brent and Kung in 1978, require $O(n^{1.63})$ field operations in general, and ${n^{3/2+o(1)}}$ field operations in the particular case of power series over a field of large enough characteristic. If using cubic-time matrix multiplication, the new algorithm runs in ${n^{5/3+o(1)}}$ operations, while previous ones run in $O(n^2)$ operations. Our approach relies on the computation of a matrix of algebraic relations that is typically of small size. Randomization is used to reduce arbitrary input to this favorable situation.
We study properties and applications of various circuit imbalance measures associated with linear spaces. These measures describe possible ratios between nonzero entries of support-minimal nonzero vectors of the space. The fractional circuit imbalance measure turns out to be a crucial parameter in the context of linear programming, and two integer variants can be used to describe integrality properties of associated polyhedra. We give an overview of the properties of these measures, and survey classical and recent applications, in particular, for linear programming algorithms with running time dependence on the constraint matrix only, and for circuit augmentation algorithms. We also present new bounds on the diameter and circuit diameter of polyhedra in terms of the fractional circuit imbalance measure.
A well-established theoretical model for modular robots in two dimensions are edge-connected configurations of square modules, which can reconfigure through so-called sliding moves. Dumitrescu and Pach [Graphs and Combinatorics, 2006] proved that it is always possible to reconfigure one edge-connected configuration of $n$ squares into any other using at most $O(n^2)$ sliding moves, while keeping the configuration connected at all times. For certain pairs of configurations, reconfiguration may require $\Omega(n^2)$ sliding moves. However, significantly fewer moves may be sufficient. We prove that it is NP-hard to minimize the number of sliding moves for a given pair of edge-connected configurations. On the positive side we present Gather&Compact, an input-sensitive in-place algorithm that requires only $O(\bar{P} n)$ sliding moves to transform one configuration into the other, where $\bar{P}$ is the maximum perimeter of the two bounding boxes. The squares move within the bounding boxes only, with the exception of at most one square at a time which may move through the positions adjacent to the bounding boxes. The $O(\bar{P} n)$ bound never exceeds $O(n^2)$, and is optimal (up to constant factors) among all bounds parameterized by just $n$ and $\bar{P}$. Our algorithm is built on the basic principle that well-connected components of modular robots can be transformed efficiently. Hence we iteratively increase the connectivity within a configuration, to finally arrive at a single solid $xy$-monotone component. We implemented Gather&Compact and compared it experimentally to the in-place modification by Moreno and Sacrist\'an [EuroCG 2020] of the Dumitrescu and Pach algorithm (MSDP). Our experiments show that Gather&Compact consistently outperforms MSDP by a significant margin, on all types of square configurations.
This work provides a theoretical framework for the pose estimation problem using total least squares for vector observations from landmark features. First, the optimization framework is formulated with observation vectors extracted from point cloud features. Then, error-covariance expressions are derived. The attitude and position solutions obtained via the derived optimization framework are proven to reach the bounds defined by the Cram\'er-Rao lower bound under the small-angle approximation of attitude errors. The measurement data for the simulation of this problem is provided through a series of vector observation scans, and a fully populated observation noise-covariance matrix is assumed as the weight in the cost function to cover the most general case of the sensor uncertainty. Here, previous derivations are expanded for the pose estimation problem to include more generic correlations in the errors than previous cases involving an isotropic noise assumption. The proposed solution is simulated in a Monte-Carlo framework to validate the error-covariance analysis.
We study the problem of graph clustering where the goal is to partition a graph into clusters, i.e. disjoint subsets of vertices, such that each cluster is well connected internally while sparsely connected to the rest of the graph. In particular, we use a natural bicriteria notion motivated by Kannan, Vempala, and Vetta which we refer to as {\em expander decomposition}. Expander decomposition has become one of the building blocks in the design of fast graph algorithms, most notably in the nearly linear time Laplacian solver by Spielman and Teng, and it also has wide applications in practice. We design algorithm for the parametrized version of expander decomposition, where given a graph $G$ of $m$ edges and a parameter $\phi$, our algorithm finds a partition of the vertices into clusters such that each cluster induces a subgraph of conductance at least $\phi$ (i.e. a $\phi$ expander), and only a $\widetilde{O}(\phi)$ fraction of the edges in $G$ have endpoints across different clusters. Our algorithm runs in $\widetilde{O}(m/\phi)$ time, and is the first nearly linear time algorithm when $\phi$ is at least $1/\log^{O(1)} m$, which is the case in most practical settings and theoretical applications. Previous results either take $\Omega(m^{1+o(1)})$ time, or attain nearly linear time but with a weaker expansion guarantee where each output cluster is guaranteed to be contained inside some unknown $\phi$ expander. Our result achieve both nearly linear running time and the strong expander guarantee for clusters. Moreover, a main technique we develop for our result can be applied to obtain a much better \emph{expander pruning} algorithm, which is the key tool for maintaining an expander decomposition on dynamic graphs. Finally, we note that our algorithm is developed from first principles based on relatively simple and basic techniques, thus making it very likely to be practical.
An $r$-quasiplanar graph is a graph drawn in the plane with no $r$ pairwise crossing edges. We prove that there is a constant $C>0$ such that for any $s>2$, every $2^s$-quasiplanar graph with $n$ vertices has at most $n(\frac{C\log n}{s})^{2s-4}$ edges. A graph whose vertices are continuous curves in the plane, two being connected by an edge if and only if they intersect, is called a string graph. We show that for every $\epsilon>0$, there exists $\delta>0$ such that every string graph with $n$ vertices, whose chromatic number is at least $n^{\epsilon}$ contains a clique of size at least $n^{\delta}$. A clique of this size or a coloring using fewer than $n^{\epsilon}$ colors can be found by a polynomial time algorithm in terms of the size of the geometric representation of the set of strings. In the process, we use, generalize, and strengthen previous results of Lee, Tomon, and others. All of our theorems are related to geometric variants of the following classical graph-theoretic problem of Erd\H os, Gallai, and Rogers. Given a $K_r$-free graph on $n$ vertices and an integer $s<r$, at least how many vertices can we find such that the subgraph induced by them is $K_s$-free?
Core decomposition is a classic technique for discovering densely connected regions in a graph with large range of applications. Formally, a $k$-core is a maximal subgraph where each vertex has at least $k$ neighbors. A natural extension of a $k$-core is a $(k, h)$-core, where each node must have at least $k$ nodes that can be reached with a path of length $h$. The downside in using $(k, h)$-core decomposition is the significant increase in the computational complexity: whereas the standard core decomposition can be done in $O(m)$ time, the generalization can require $O(n^2m)$ time, where $n$ and $m$ are the number of nodes and edges in the given graph. In this paper we propose a randomized algorithm that produces an $\epsilon$-approximation of $(k, h)$ core decomposition with a probability of $1 - \delta$ in $O(\epsilon^{-2} hm (\log^2 n - \log \delta))$ time. The approximation is based on sampling the neighborhoods of nodes, and we use Chernoff bound to prove the approximation guarantee. We demonstrate empirically that approximating the decomposition complements the exact computation: computing the approximation is significantly faster than computing the exact solution for the networks where computing the exact solution is slow.
We consider a problem introduced by Feige, Gamarnik, Neeman, R\'acz and Tetali [2020], that of finding a large clique in a random graph $G\sim G(n,\frac{1}{2})$, where the graph $G$ is accessible by queries to entries of its adjacency matrix. The query model allows some limited adaptivity, with a constant number of rounds of queries, and $n^\delta$ queries in each round. With high probability, the maximum clique in $G$ is of size roughly $2\log n$, and the goal is to find cliques of size $\alpha\log n$, for $\alpha$ as large as possible. We prove that no two-rounds algorithm is likely to find a clique larger than $\frac{4}{3}\delta\log n$, which is a tight upper bound when $1\leq\delta\leq \frac{6}{5}$. For other ranges of parameters, namely, two-rounds with $\frac{6}{5}<\delta<2$, and three-rounds with $1\leq\delta<2$, we improve over the previously known upper bounds on $\alpha$, but our upper bounds are not tight. If early rounds are restricted to have fewer queries than the last round, then for some such restrictions we do prove tight upper bounds.
The Dyck language, which consists of well-balanced sequences of parentheses, is one of the most fundamental context-free languages. The Dyck edit distance quantifies the number of edits (character insertions, deletions, and substitutions) required to make a given parenthesis sequence well-balanced. RNA Folding involves a similar problem, where a closing parenthesis can match an opening parenthesis of the same type irrespective of their ordering. For example, in RNA Folding, both $\tt{()}$ and $\tt{)(}$ are valid matches, whereas the Dyck language only allows $\tt{()}$ as a match. Using fast matrix multiplication, it is possible to compute their exact solutions of both problems in time $O(n^{2.824})$. Whereas combinatorial algorithms would be more desirable, the two problems are known to be at least as hard as Boolean matrix multiplication. In terms of fast approximation algorithms that are combinatorial in nature, both problems admit an $\epsilon n$-additive approximation in $\tilde{O}(\frac{n^2}{\epsilon})$ time. Further, there is a $O(\log n)$-factor approximation algorithm for Dyck edit distance in near-linear time. In this paper, we design a constant-factor approximation algorithm for Dyck edit distance that runs in $O(n^{1.971})$ time. Moreover, we develop a $(1+\epsilon)$-factor approximation algorithm running in $\tilde{O}(\frac{n^2}{\epsilon})$ time, which improves upon the earlier additive approximation. Finally, we design a $(3+\epsilon)$-approximation that takes $\tilde{O}(\frac{nd}{\epsilon})$ time, where $d\ge 1$ is an upper bound on the sought distance. As for RNA folding, for any $s\ge1$, we design a factor-$s$ approximation algorithm that runs in $O(n+(\frac{n}{s})^3)$ time. To the best of our knowledge, this is the first nontrivial approximation algorithm for RNA Folding that can go below the $n^2$ barrier. All our algorithms are combinatorial.
Real-world data often comes in compressed form. Analyzing compressed data directly (without decompressing it) can save space and time by orders of magnitude. In this work, we focus on fundamental sequence comparison problems and try to quantify the gain in time complexity when the underlying data is highly compressible. We consider grammar compression, which unifies many practically relevant compression schemes. For two strings of total length $N$ and total compressed size $n$, it is known that the edit distance and a longest common subsequence (LCS) can be computed exactly in time $\tilde{O}(nN)$, as opposed to $O(N^2)$ for the uncompressed setting. Many applications need to align multiple sequences simultaneously, and the fastest known exact algorithms for median edit distance and LCS of $k$ strings run in $O(N^k)$ time. This naturally raises the question of whether compression can help to reduce the running time significantly for $k \geq 3$, perhaps to $O(N^{k/2}n^{k/2})$ or $O(Nn^{k-1})$. Unfortunately, we show lower bounds that rule out any improvement beyond $\Omega(N^{k-1}n)$ time for any of these problems assuming the Strong Exponential Time Hypothesis. At the same time, we show that approximation and compression together can be surprisingly effective. We develop an $\tilde{O}(N^{k/2}n^{k/2})$-time FPTAS for the median edit distance of $k$ sequences. In comparison, no $O(N^{k-\Omega(1)})$-time PTAS is known for the median edit distance problem in the uncompressed setting. For two strings, we get an $\tilde{O}(N^{2/3}n^{4/3})$-time FPTAS for both edit distance and LCS. In contrast, for uncompressed strings, there is not even a subquadratic algorithm for LCS that has less than a polynomial gap in the approximation factor. Building on the insight from our approximation algorithms, we also obtain results for many distance measures including the edit, Hamming, and shift distances.
There are distributed graph algorithms for finding maximal matchings and maximal independent sets in $O(\Delta + \log^* n)$ communication rounds; here $n$ is the number of nodes and $\Delta$ is the maximum degree. The lower bound by Linial (1987, 1992) shows that the dependency on $n$ is optimal: these problems cannot be solved in $o(\log^* n)$ rounds even if $\Delta = 2$. However, the dependency on $\Delta$ is a long-standing open question, and there is currently an exponential gap between the upper and lower bounds. We prove that the upper bounds are tight. We show that any algorithm that finds a maximal matching or maximal independent set with probability at least $1-1/n$ requires $\Omega(\min\{\Delta,\log \log n / \log \log \log n\})$ rounds in the LOCAL model of distributed computing. As a corollary, it follows that any deterministic algorithm that finds a maximal matching or maximal independent set requires $\Omega(\min\{\Delta, \log n / \log \log n\})$ rounds; this is an improvement over prior lower bounds also as a function of $n$.