Gaussian processes (GPs) are widely-used tools in spatial statistics and machine learning and the formulae for the mean function and covariance kernel of a GP $v$ that is the image of another GP $u$ under a linear transformation $T$ acting on the sample paths of $u$ are well known, almost to the point of being folklore. However, these formulae are often used without rigorous attention to technical details, particularly when $T$ is an unbounded operator such as a differential operator, which is common in many modern applications. This note provides a self-contained proof of the claimed formulae for the case of a closed, densely-defined operator $T$ acting on the sample paths of a square-integrable (not necessarily Gaussian) stochastic process. Our proof technique relies upon Hille's theorem for the Bochner integral of a Banach-valued random variable.
We show how quantum-inspired 2d tensor networks can be used to efficiently and accurately simulate the largest quantum processors from IBM, namely Eagle (127 qubits), Osprey (433 qubits) and Condor (1121 qubits). We simulate the dynamics of a complex quantum many-body system -- specifically, the kicked Ising experiment considered recently by IBM in Nature 618, p. 500-505 (2023) -- using graph-based Projected Entangled Pair States (gPEPS), which was proposed by some of us in PRB 99, 195105 (2019). Our results show that simple tensor updates are already sufficient to achieve very large unprecedented accuracy with remarkably low computational resources for this model. Apart from simulating the original experiment for 127 qubits, we also extend our results to 433 and 1121 qubits, thus setting a benchmark for the newest IBM quantum machines. We also report accurate simulations for infinitely-many qubits. Our results show that gPEPS are a natural tool to efficiently simulate quantum computers with an underlying lattice-based qubit connectivity, such as all quantum processors based on superconducting qubits.
I propose an alternative algorithm to compute the MMS voting rule. Instead of using linear programming, in this new algorithm the maximin support value of a committee is computed using a sequence of maximum flow problems.
A non-intrusive proper generalized decomposition (PGD) strategy, coupled with an overlapping domain decomposition (DD) method, is proposed to efficiently construct surrogate models of parametric linear elliptic problems. A parametric multi-domain formulation is presented, with local subproblems featuring arbitrary Dirichlet interface conditions represented through the traces of the finite element functions used for spatial discretization at the subdomain level, with no need for additional auxiliary basis functions. The linearity of the operator is exploited to devise low-dimensional problems with only few active boundary parameters. An overlapping Schwarz method is used to glue the local surrogate models, solving a linear system for the nodal values of the parametric solution at the interfaces, without introducing Lagrange multipliers to enforce the continuity in the overlapping region. The proposed DD-PGD methodology relies on a fully algebraic formulation allowing for real-time computation based on the efficient interpolation of the local surrogate models in the parametric space, with no additional problems to be solved during the execution of the Schwarz algorithm. Numerical results for parametric diffusion and convection-diffusion problems are presented to showcase the accuracy of the DD-PGD approach, its robustness in different regimes and its superior performance with respect to standard high-fidelity DD methods.
We present a method for computing nearly singular integrals that occur when single or double layer surface integrals, for harmonic potentials or Stokes flow, are evaluated at points nearby. Such values could be needed in solving an integral equation when one surface is close to another or to obtain values at grid points. We replace the singular kernel with a regularized version having a length parameter $\delta$ in order to control discretization error. Analysis near the singularity leads to an expression for the error due to regularization which has terms with unknown coefficients multiplying known quantities. By computing the integral with three choices of $\delta$ we can solve for an extrapolated value that has regularization error reduced to $O(\delta^5)$. In examples with $\delta/h$ constant and moderate resolution we observe total error about $O(h^5)$. For convergence as $h \to 0$ we can choose $\delta$ proportional to $h^q$ with $q < 1$ to ensure the discretization error is dominated by the regularization error. With $q = 4/5$ we find errors about $O(h^4)$. For harmonic potentials we extend the approach to a version with $O(\delta^7)$ regularization; it typically has smaller errors but the order of accuracy is less predictable.
Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.
We investigate the combinatorics of max-pooling layers, which are functions that downsample input arrays by taking the maximum over shifted windows of input coordinates, and which are commonly used in convolutional neural networks. We obtain results on the number of linearity regions of these functions by equivalently counting the number of vertices of certain Minkowski sums of simplices. We characterize the faces of such polytopes and obtain generating functions and closed formulas for the number of vertices and facets in a 1D max-pooling layer depending on the size of the pooling windows and stride, and for the number of vertices in a special case of 2D max-pooling.
We propose a new class of models for variable clustering called Asymptotic Independent block (AI-block) models, which defines population-level clusters based on the independence of the maxima of a multivariate stationary mixing random process among clusters. This class of models is identifiable, meaning that there exists a maximal element with a partial order between partitions, allowing for statistical inference. We also present an algorithm for recovering the clusters of variables without specifying the number of clusters \emph{a priori}. Our work provides some theoretical insights into the consistency of our algorithm, demonstrating that under certain conditions it can effectively identify clusters in the data with a computational complexity that is polynomial in the dimension. This implies that groups can be learned nonparametrically in which block maxima of a dependent process are only sub-asymptotic. To further illustrate the significance of our work, we applied our method to neuroscience and environmental real-datasets. These applications highlight the potential and versatility of the proposed approach.
Weak-label learning is a challenging task that requires learning from data "bags" containing positive and negative instances, but only the bag labels are known. The pool of negative instances is usually larger than positive instances, thus making selecting the most informative negative instance critical for performance. Such a selection strategy for negative instances from each bag is an open problem that has not been well studied for weak-label learning. In this paper, we study several sampling strategies that can measure the usefulness of negative instances for weak-label learning and select them accordingly. We test our method on CIFAR-10 and AudioSet datasets and show that it improves the weak-label classification performance and reduces the computational cost compared to random sampling methods. Our work reveals that negative instances are not all equally irrelevant, and selecting them wisely can benefit weak-label learning.
Dye experimentation is a widely used method in experimental fluid mechanics for flow analysis or for the study of the transport of particles within a fluid. This technique is particularly useful in biomedical diagnostic applications ranging from hemodynamic analysis of cardiovascular systems to ocular circulation. However, simulating dyes governed by convection-diffusion partial differential equations (PDEs) can also be a useful post-processing analysis approach for computational fluid dynamics (CFD) applications. Such simulations can be used to identify the relative significance of different spatial subregions in particular time intervals of interest in an unsteady flow field. Additionally, dye evolution is closely related to non-discrete particle residence time (PRT) calculations that are governed by similar PDEs. This contribution introduces a pseudo-spectral method based on Fourier continuation (FC) for conducting dye simulations and non-discrete particle residence time calculations without numerical diffusion errors. Convergence and error analyses are performed with both manufactured and analytical solutions. The methodology is applied to three distinct physical/physiological cases: 1) flow over a two-dimensional (2D) cavity; 2) pulsatile flow in a simplified partially-grafted aortic dissection model; and 3) non-Newtonian blood flow in a Fontan graft. Although velocity data is provided in this work by numerical simulation, the proposed approach can also be applied to velocity data collected through experimental techniques such as from particle image velocimetry.
We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.