亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The $\beta$-model has been extensively utilized to model degree heterogeneity in networks, wherein each node is assigned a unique parameter. In this article, we consider the hypothesis testing problem that two nodes $i$ and $j$ of a $\beta$-model have the same node parameter. We prove that the null distribution of the proposed statistic converges in distribution to the standard normal distribution. Further, we investigate the homogeneous test for $\beta$-model by combining individual $p$-values to aggregate small effects of multiple tests. Both simulation studies and real-world data examples indicate that the proposed method works well.

相關內容

We study the asymptotic eigenvalue distribution of the Slepian spatiospectral concentration problem within subdomains of the $d$-dimensional unit ball $\mathbb{B}^d$. The clustering of the eigenvalues near zero and one is a well-known phenomenon. Here, we provide an analytical investigation of this phenomenon for two different notions of bandlimit: (a) multivariate polynomials, with the maximal polynomial degree determining the bandlimit, (b) basis functions that separate into radial and spherical contributions (expressed in terms of Jacobi polynomials and spherical harmonics, respectively), with separate maximal degrees for the radial and spherical contributions determining the bandlimit. In particular, we investigate the number of relevant non-zero eigenvalues (the so-called Shannon number) and obtain distinct asymptotic results for both notions of bandlimit, characterized by Jacobi weights $W_0$ and a modification $\widetilde{W_0}$, respectively. The analytic results are illustrated by numerical examples on the 3-d ball.

We investigate inexact proximity operators for weakly convex functions. To this aim, we derive sum rules for proximal {\epsilon}-subdifferentials, by incorporating the moduli of weak convexity of the functions into the respective formulas. This allows us to investigate inexact proximity operators for weakly convex functions in terms of proximal {\epsilon}-subdifferentials.

We derive eigenvalue bounds for the $t$-distance chromatic number of a graph, which is a generalization of the classical chromatic number. We apply such bounds to hypercube graphs, providing alternative spectral proofs for results by Ngo, Du and Graham [Inf. Process. Lett., 2002], and improving their bound for several instances. We also apply the eigenvalue bounds to Lee graphs, extending results by Kim and Kim [Discrete Appl. Math., 2011]. Finally, we provide a complete characterization for the existence of perfect Lee codes of minimum distance $3$. In order to prove our results, we use a mix of spectral and number theory tools. Our results, which provide the first application of spectral methods to Lee codes, illustrate that such methods succeed to capture the nature of the Lee metric.

The use of ML models to predict a user's cognitive state from behavioral data has been studied for various applications which includes predicting the intent to perform selections in VR. We developed a novel technique that uses gaze-based intent models to adapt dwell-time thresholds to aid gaze-only selection. A dataset of users performing selection in arithmetic tasks was used to develop intent prediction models (F1 = 0.94). We developed GazeIntent to adapt selection dwell times based on intent model outputs and conducted an end-user study with returning and new users performing additional tasks with varied selection frequencies. Personalized models for returning users effectively accounted for prior experience and were preferred by 63% of users. Our work provides the field with methods to adapt dwell-based selection to users, account for experience over time, and consider tasks that vary by selection frequency

The first-order binomial autoregressive (BAR(1)) model is the most frequently used tool to analyze the bounded count time series. The BAR(1) model is stationary and assumes process parameters to remain constant throughout the time period, which may be incompatible with the non-stationary real data, which indicates piecewise stationary characteristic. To better analyze the non-stationary bounded count time series, this article introduces the BAR(1) process with multiple change-points, which contains the BAR(1) model as a special case. Our primary goals are not only to detect the change-points, but also to give a solution to estimate the number and locations of the change-points. For this, the cumulative sum (CUSUM) test and minimum description length (MDL) principle are employed to deal with the testing and estimation problems. The proposed approaches are also applied to analysis of the Harmonised Index of Consumer Prices of the European Union.

Kalai's $3^d$ conjecture states that every centrally-symmetric $d$-polytope has at least $3^d$ faces. We give short proofs for two special cases: if $P$ is unconditional (that is, invariant w.r.t. reflection in any coordinate hyperplane), and more generally, if $P$ is locally anti-blocking. In both cases we show that the minimum is attained exactly for the Hanner polytopes.

We design quasi-interpolation operators based on piecewise polynomial weight functions of degree less than or equal to $p$ that map into the space of continuous piecewise polynomials of degree less than or equal to $p+1$. We show that the operators have optimal approximation properties, i.e., of order $p+2$. This can be exploited to enhance the accuracy of finite element approximations provided that they are sufficiently close to the orthogonal projection of the exact solution on the space of piecewise polynomials of degree less than or equal to $p$. Such a condition is met by various numerical schemes, e.g., mixed finite element methods and discontinuous Petrov--Galerkin methods. Contrary to well-established postprocessing techniques which also require this or a similar closeness property, our proposed method delivers a conforming postprocessed solution that does not rely on discrete approximations of derivatives nor local versions of the underlying PDE. In addition, we introduce a second family of quasi-interpolation operators that are based on piecewise constant weight functions, which can be used, e.g., to postprocess solutions of hybridizable discontinuous Galerkin methods. Another application of our proposed operators is the definition of projection operators bounded in Sobolev spaces with negative indices. Numerical examples demonstrate the effectiveness of our approach.

This paper presents new upper bounds on the rate of linear $k$-hash codes in $\mathbb{F}_q^n$, $q\geq k$, that is, codes with the property that any $k$ distinct codewords are all simultaneously distinct in at least one coordinate.

In a Jacobi--Davidson (JD) type method for singular value decomposition (SVD) problems, called JDSVD, a large symmetric and generally indefinite correction equation is approximately solved iteratively at each outer iteration, which constitutes the inner iterations and dominates the overall efficiency of JDSVD. In this paper, a convergence analysis is made on the minimal residual (MINRES) method for the correction equation. Motivated by the results obtained, a preconditioned correction equation is derived that extracts useful information from current searching subspaces to construct effective preconditioners for the correction equation and is proved to retain the same convergence of outer iterations of JDSVD. The resulting method is called inner preconditioned JDSVD (IPJDSVD) method. Convergence results show that MINRES for the preconditioned correction equation can converge much faster when there is a cluster of singular values closest to a given target, so that IPJDSVD is more efficient than JDSVD. A new thick-restart IPJDSVD algorithm with deflation and purgation is proposed that simultaneously accelerates the outer and inner convergence of the standard thick-restart JDSVD and computes several singular triplets of a large matrix. Numerical experiments justify the theory and illustrate the considerable superiority of IPJDSVD to JDSVD.

In this paper, by using $|x|=2\max\{0,x\}-x$, a class of maximum-based iteration methods is established to solve the generalized absolute value equation $Ax-B|x|=b$. Some convergence conditions of the proposed method are presented. By some numerical experiments, the effectiveness and feasibility of the proposed method are confirmed.

北京阿比特科技有限公司