In this study, we address multi-robot localization issues, with a specific focus on cooperative localization and observability analysis of relative pose estimation. Cooperative localization involves enhancing each robot's information through a communication network and message passing. If odometry data from a target robot can be transmitted to the ego robot, observability of their relative pose estimation can be achieved through range-only or bearing-only measurements, provided both robots have non-zero linear velocities. In cases where odometry data from a target robot are not directly transmitted but estimated by the ego robot, both range and bearing measurements are necessary to ensure observability of relative pose estimation. For ROS/Gazebo simulations, we explore four sensing and communication structures. We compare extended Kalman filtering (EKF) and pose graph optimization (PGO) estimation using different robust loss functions (filtering and smoothing with varying batch sizes of sliding windows) in terms of estimation accuracy. In hardware experiments, two Turtlebot3 equipped with UWB modules are used for real-world inter-robot relative pose estimation, applying both EKF and PGO and comparing their performance.
In this work we investigate an inverse coefficient problem for the one-dimensional subdiffusion model, which involves a Caputo fractional derivative in time. The inverse problem is to determine two coefficients and multiple parameters (the order, and length of the interval) from one pair of lateral Cauchy data. The lateral Cauchy data are given on disjoint sets in time with a single excitation and the measurement is made on a time sequence located outside the support of the excitation. We prove two uniqueness results for different lateral Cauchy data. The analysis is based on the solution representation, analyticity of the observation and a refined version of inverse Sturm-Liouville theory due to Sini [35]. Our results heavily exploit the memory effect of fractional diffusion for the unique recovery of the coefficients in the model. Several numerical experiments are also presented to complement the analysis.
In this study, we introduce a novel framework called Toast for learning general-purpose representations of road networks, along with its advanced counterpart DyToast, designed to enhance the integration of temporal dynamics to boost the performance of various time-sensitive downstream tasks. Specifically, we propose to encode two pivotal semantic characteristics intrinsic to road networks: traffic patterns and traveling semantics. To achieve this, we refine the skip-gram module by incorporating auxiliary objectives aimed at predicting the traffic context associated with a target road segment. Moreover, we leverage trajectory data and design pre-training strategies based on Transformer to distill traveling semantics on road networks. DyToast further augments this framework by employing unified trigonometric functions characterized by their beneficial properties, enabling the capture of temporal evolution and dynamic nature of road networks more effectively. With these proposed techniques, we can obtain representations that encode multi-faceted aspects of knowledge within road networks, applicable across both road segment-based applications and trajectory-based applications. Extensive experiments on two real-world datasets across three tasks demonstrate that our proposed framework consistently outperforms the state-of-the-art baselines by a significant margin.
In this paper, we formulate the multi-agent graph bandit problem as a multi-agent extension of the graph bandit problem introduced by Zhang, Johansson, and Li [CISS 57, 1-6 (2023)]. In our formulation, $N$ cooperative agents travel on a connected graph $G$ with $K$ nodes. Upon arrival at each node, agents observe a random reward drawn from a node-dependent probability distribution. The reward of the system is modeled as a weighted sum of the rewards the agents observe, where the weights capture some transformation of the reward associated with multiple agents sampling the same node at the same time. We propose an Upper Confidence Bound (UCB)-based learning algorithm, Multi-G-UCB, and prove that its expected regret over $T$ steps is bounded by $O(\gamma N\log(T)[\sqrt{KT} + DK])$, where $D$ is the diameter of graph $G$ and $\gamma$ a boundedness parameter associated with the weight functions. Lastly, we numerically test our algorithm by comparing it to alternative methods.
In this work, we consider the problem of localizing multiple signal sources based on time-difference of arrival (TDOA) measurements. In the blind setting, in which the source signals are not known, the localization task is challenging due to the data association problem. That is, it is not known which of the TDOA measurements correspond to the same source. Herein, we propose to perform joint localization and data association by means of an optimal transport formulation. The method operates by finding optimal groupings of TDOA measurements and associating these with candidate source locations. To allow for computationally feasible localization in three-dimensional space, an efficient set of candidate locations is constructed using a minimal multilateration solver based on minimal sets of receiver pairs. In numerical simulations, we demonstrate that the proposed method is robust both to measurement noise and TDOA detection errors. Furthermore, it is shown that the data association provided by the proposed method allows for statistically efficient estimates of the source locations.
In this study, we address the intricate challenge of multi-task dense prediction, encompassing tasks such as semantic segmentation, depth estimation, and surface normal estimation, particularly when dealing with partially annotated data (MTPSL). The complexity arises from the absence of complete task labels for each training image. Given the inter-related nature of these pixel-wise dense tasks, our focus is on mining and capturing cross-task relationships. Existing solutions typically rely on learning global image representations for global cross-task image matching, imposing constraints that, unfortunately, sacrifice the finer structures within the images. Attempting local matching as a remedy faces hurdles due to the lack of precise region supervision, making local alignment a challenging endeavor. The introduction of Segment Anything Model (SAM) sheds light on addressing local alignment challenges by providing free and high-quality solutions for region detection. Leveraging SAM-detected regions, the subsequent challenge lies in aligning the representations within these regions. Diverging from conventional methods that directly learn a monolithic image representation, our proposal involves modeling region-wise representations using Gaussian Distributions. Aligning these distributions between corresponding regions from different tasks imparts higher flexibility and capacity to capture intra-region structures, accommodating a broader range of tasks. This innovative approach significantly enhances our ability to effectively capture cross-task relationships, resulting in improved overall performance in partially supervised multi-task dense prediction scenarios. Extensive experiments conducted on two widely used benchmarks underscore the superior effectiveness of our proposed method, showcasing state-of-the-art performance even when compared to fully supervised methods.
This paper presents a proof-of-concept study that examines the utilization of generative AI and mobile robotics for autonomous laboratory monitoring in the pharmaceutical R&D laboratory. The study investigates the potential advantages of anomaly detection and automated reporting by multi-modal model and Vision Foundation Model (VFM), which have the potential to enhance compliance and safety in laboratory environments. Additionally, the paper discusses the current limitations of the generative AI approach and proposes future directions for its application in lab monitoring.
As artificial intelligence continues its unprecedented global expansion, accompanied by a proliferation of benefits, an increasing apprehension about the privacy and security implications of AI-enabled systems emerges. The pivotal question of effectively controlling AI development at both jurisdictional and organizational levels has become a prominent theme in contemporary discourse. While the European Parliament and Council have taken a decisive step by reaching a political agreement on the EU AI Act, the first comprehensive AI law, organizations still find it challenging to adapt to the fast-evolving AI landscape, lacking a universal tool for evaluating the privacy and security dimensions of their AI models and systems. In response to this critical challenge, this study conducts a systematic literature review spanning the years 2020 to 2023, with a primary focus on establishing a unified definition of key concepts in AI Ethics, particularly emphasizing the domains of privacy and security. Through the synthesis of knowledge extracted from the SLR, this study presents a conceptual framework tailored for privacy- and security-aware AI systems. This framework is designed to assist diverse stakeholders, including organizations, academic institutions, and governmental bodies, in both the development and critical assessment of AI systems. Essentially, the proposed framework serves as a guide for ethical decision-making, fostering an environment wherein AI is developed and utilized with a strong commitment to ethical principles. In addition, the study unravels the key issues and challenges surrounding the privacy and security dimensions, delineating promising avenues for future research, thereby contributing to the ongoing dialogue on the globalization and democratization of AI ethics.
In this work, we investigate the potential of large language models (LLMs) based agents to automate data science tasks, with the goal of comprehending task requirements, then building and training the best-fit machine learning models. Despite their widespread success, existing LLM agents are hindered by generating unreasonable experiment plans within this scenario. To this end, we present DS-Agent, a novel automatic framework that harnesses LLM agent and case-based reasoning (CBR). In the development stage, DS-Agent follows the CBR framework to structure an automatic iteration pipeline, which can flexibly capitalize on the expert knowledge from Kaggle, and facilitate consistent performance improvement through the feedback mechanism. Moreover, DS-Agent implements a low-resource deployment stage with a simplified CBR paradigm to adapt past successful solutions from the development stage for direct code generation, significantly reducing the demand on foundational capabilities of LLMs. Empirically, DS-Agent with GPT-4 achieves an unprecedented 100% success rate in the development stage, while attaining 36% improvement on average one pass rate across alternative LLMs in the deployment stage. In both stages, DS-Agent achieves the best rank in performance, costing \$1.60 and \$0.13 per run with GPT-4, respectively. Our code is open-sourced at //github.com/guosyjlu/DS-Agent.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.