亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Two-Way Ranging enables the distance estimation between two active parties and allows time of flight measurements despite relative clock offset and drift. Limited by the number of messages, scalable solutions build on Time Difference on Arrival to infer timing information at passive listeners. However, the demand for accurate distance estimates dictates a tight bound on the time synchronization, thus limiting scalability to the localization of passive tags relative to static, synchronized anchors. This work describes the extraction of Time Difference on Arrival information from a Two-Way Ranging process, enabling the extraction of distance information on passive listeners and further allowing scalable tag localization without the need for static or synchronized anchors. The expected error is formally deducted. The extension allows the extraction of the timing difference despite relative clock offset and drift for the Double-Sided Two-Way Ranging and Single-Sided Two-Way Ranging with additional carrier frequency offset estimation.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Performer · Learning · MoDELS · 穩健性 ·
2022 年 6 月 9 日

Learning models that offer robust out-of-distribution generalization and fast adaptation is a key challenge in modern machine learning. Modelling causal structure into neural networks holds the promise to accomplish robust zero and few-shot adaptation. Recent advances in differentiable causal discovery have proposed to factorize the data generating process into a set of modules, i.e. one module for the conditional distribution of every variable where only causal parents are used as predictors. Such a modular decomposition of knowledge enables adaptation to distributions shifts by only updating a subset of parameters. In this work, we systematically study the generalization and adaption performance of such modular neural causal models by comparing it to monolithic models and structured models where the set of predictors is not constrained to causal parents. Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes and offer robust generalization. We also found that the effects are more significant for sparser graphs as compared to denser graphs.

Semantic 3D scene understanding is a problem of critical importance in robotics. While significant advances have been made in simultaneous localization and mapping algorithms, robots are still far from having the common sense knowledge about household objects and their locations of an average human. We introduce a novel method for leveraging common sense embedded within large language models for labelling rooms given the objects contained within. This algorithm has the added benefits of (i) requiring no task-specific pre-training (operating entirely in the zero-shot regime) and (ii) generalizing to arbitrary room and object labels, including previously-unseen ones -- both of which are highly desirable traits in robotic scene understanding algorithms. The proposed algorithm operates on 3D scene graphs produced by modern spatial perception systems, and we hope it will pave the way to more generalizable and scalable high-level 3D scene understanding for robotics.

Article prediction is a task that has long defied accurate linguistic description. As such, this task is ideally suited to evaluate models on their ability to emulate native-speaker intuition. To this end, we compare the performance of native English speakers and pre-trained models on the task of article prediction set up as a three way choice (a/an, the, zero). Our experiments with BERT show that BERT outperforms humans on this task across all articles. In particular, BERT is far superior to humans at detecting the zero article, possibly because we insert them using rules that the deep neural model can easily pick up. More interestingly, we find that BERT tends to agree more with annotators than with the corpus when inter-annotator agreement is high but switches to agreeing more with the corpus as inter-annotator agreement drops. We contend that this alignment with annotators, despite being trained on the corpus, suggests that BERT is not memorising article use, but captures a high level generalisation of article use akin to human intuition.

The Internet of Things (IoT) is increasingly present in many family homes, yet it is unclear precisely how well families understand the cyber security threats and risks of using such devices, and how possible it is for them to educate themselves on these topics. Using a survey of 553 parents and interviews with 25 families in the UK, we find that families do not consider home IoT devices to be significantly different in terms of threats than more traditional home computers, and believe the major risks to be largely mitigated through consumer protection regulation. As a result, parents focus on teaching being careful with devices to prolong device life use, exposing their families to additional security risks and modeling incorrect security behaviors to their children. This is a risk for the present and also one for the future, as children are not taught about the IoT, and appropriate cyber security management of such devices, at school. We go on to suggest that steps must be taken by manufacturers and governments or appropriate trusted institutions to improve the cyber security knowledge and behaviors of both adults and children in relation to the use of home IoT devices.

We describe the categorical semantics for a simply typed variant and a simplified dependently typed variant of Cocon, a contextual modal type theory where the box modality mediates between the weak function space that is used to represent higher-order abstract syntax (HOAS) trees and the strong function space that describes (recursive) computations about them. What makes Cocon different from standard type theories is the presence of first-class contexts and contextual objects to describe syntax trees that are closed with respect to a given context of assumptions. Following M. Hofmann's work, we use a presheaf model to characterise HOAS trees. Surprisingly, this model already provides the necessary structure to also model Cocon. In particular, we can capture the contextual objects of Cocon using a comonad $\flat$ that restricts presheaves to their closed elements. This gives a simple semantic characterisation of the invariants of contextual types (e.g. substitution invariance) and identifies Cocon as a type-theoretic syntax of presheaf models. We further extend this characterisation to dependent types using categories with families and show that we can model a fragment of Cocon without recursor in the Fitch-style dependent modal type theory presented by Birkedal et. al..

We show direct and conceptually simple reductions between the classical learning with errors (LWE) problem and its continuous analog, CLWE (Bruna, Regev, Song and Tang, STOC 2021). This allows us to bring to bear the powerful machinery of LWE-based cryptography to the applications of CLWE. For example, we obtain the hardness of CLWE under the classical worst-case hardness of the gap shortest vector problem. Previously, this was known only under quantum worst-case hardness of lattice problems. More broadly, with our reductions between the two problems, any future developments to LWE will also apply to CLWE and its downstream applications. As a concrete application, we show an improved hardness result for density estimation for mixtures of Gaussians. In this computational problem, given sample access to a mixture of Gaussians, the goal is to output a function that estimates the density function of the mixture. Under the (plausible and widely believed) exponential hardness of the classical LWE problem, we show that Gaussian mixture density estimation in $\mathbb{R}^n$ with roughly $\log n$ Gaussian components given $\mathsf{poly}(n)$ samples requires time quasi-polynomial in $n$. Under the (conservative) polynomial hardness of LWE, we show hardness of density estimation for $n^{\epsilon}$ Gaussians for any constant $\epsilon > 0$, which improves on Bruna, Regev, Song and Tang (STOC 2021), who show hardness for at least $\sqrt{n}$ Gaussians under polynomial (quantum) hardness assumptions. Our key technical tool is a reduction from classical LWE to LWE with $k$-sparse secrets where the multiplicative increase in the noise is only $O(\sqrt{k})$, independent of the ambient dimension $n$.

The globalization of the electronics supply chain requires effective methods to thwart reverse engineering and IP theft. Logic locking is a promising solution, but there are many open concerns. First, even when applied at a higher level of abstraction, locking may result in significant overhead without improving the security metric. Second, optimizing a security metric is application-dependent and designers must evaluate and compare alternative solutions. We propose a meta-framework to optimize the use of behavioral locking during the high-level synthesis (HLS) of IP cores. Our method operates on chip's specification (before HLS) and it is compatible with all HLS tools, complementing industrial EDA flows. Our meta-framework supports different strategies to explore the design space and to select points to be locked automatically. We evaluated our method on the optimization of differential entropy, achieving better results than random or topological locking: 1) we always identify a valid solution that optimizes the security metric, while topological and random locking can generate unfeasible solutions; 2) we minimize the number of bits used for locking up to more than 90% (requiring smaller tamper-proof memories); 3) we make better use of hardware resources since we obtain similar overheads but with higher security metric.

A common approach when studying the quality of representation involves comparing the latent preferences of voters and legislators, commonly obtained by fitting an item-response theory (IRT) model to a common set of stimuli. Despite being exposed to the same stimuli, voters and legislators may not share a common understanding of how these stimuli map onto their latent preferences, leading to differential item-functioning (DIF) and incomparability of estimates. We explore the presence of DIF and incomparability of latent preferences obtained through IRT models by re-analyzing an influential survey data set, where survey respondents expressed their preferences on roll call votes that U.S. legislators had previously voted on. To do so, we propose defining a Dirichlet Process prior over item-response functions in standard IRT models. In contrast to typical multi-step approaches to detecting DIF, our strategy allows researchers to fit a single model, automatically identifying incomparable sub-groups with different mappings from latent traits onto observed responses. We find that although there is a group of voters whose estimated positions can be safely compared to those of legislators, a sizeable share of surveyed voters understand stimuli in fundamentally different ways. Ignoring these issues can lead to incorrect conclusions about the quality of representation.

Script event prediction requires a model to predict the subsequent event given an existing event context. Previous models based on event pairs or event chains cannot make full use of dense event connections, which may limit their capability of event prediction. To remedy this, we propose constructing an event graph to better utilize the event network information for script event prediction. In particular, we first extract narrative event chains from large quantities of news corpus, and then construct a narrative event evolutionary graph (NEEG) based on the extracted chains. NEEG can be seen as a knowledge base that describes event evolutionary principles and patterns. To solve the inference problem on NEEG, we present a scaled graph neural network (SGNN) to model event interactions and learn better event representations. Instead of computing the representations on the whole graph, SGNN processes only the concerned nodes each time, which makes our model feasible to large-scale graphs. By comparing the similarity between input context event representations and candidate event representations, we can choose the most reasonable subsequent event. Experimental results on widely used New York Times corpus demonstrate that our model significantly outperforms state-of-the-art baseline methods, by using standard multiple choice narrative cloze evaluation.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司