亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In partially observable multi-agent systems, agents typically only have access to local observations. This severely hinders their ability to make precise decisions, particularly during decentralized execution. To alleviate this problem and inspired by image outpainting, we propose State Inference with Diffusion Models (SIDIFF), which uses diffusion models to reconstruct the original global state based solely on local observations. SIDIFF consists of a state generator and a state extractor, which allow agents to choose suitable actions by considering both the reconstructed global state and local observations. In addition, SIDIFF can be effortlessly incorporated into current multi-agent reinforcement learning algorithms to improve their performance. Finally, we evaluated SIDIFF on different experimental platforms, including Multi-Agent Battle City (MABC), a novel and flexible multi-agent reinforcement learning environment we developed. SIDIFF achieved desirable results and outperformed other popular algorithms.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 回合 · 可理解性 · 編譯器 · Agent ·
2024 年 9 月 27 日

Goal-directed interactive agents, which autonomously complete tasks through interactions with their environment, can assist humans in various domains of their daily lives. Recent advances in large language models (LLMs) led to a surge of new, more and more challenging tasks to evaluate such agents. To properly contextualize performance across these tasks, it is imperative to understand the different challenges they pose to agents. To this end, this survey compiles relevant tasks and environments for evaluating goal-directed interactive agents, structuring them along dimensions relevant for understanding current obstacles. An up-to-date compilation of relevant resources can be found on our project website: //coli-saar.github.io/interactive-agents.

Humans can learn to manipulate new objects by simply watching others; providing robots with the ability to learn from such demonstrations would enable a natural interface specifying new behaviors. This work develops Robot See Robot Do (RSRD), a method for imitating articulated object manipulation from a single monocular RGB human demonstration given a single static multi-view object scan. We first propose 4D Differentiable Part Models (4D-DPM), a method for recovering 3D part motion from a monocular video with differentiable rendering. This analysis-by-synthesis approach uses part-centric feature fields in an iterative optimization which enables the use of geometric regularizers to recover 3D motions from only a single video. Given this 4D reconstruction, the robot replicates object trajectories by planning bimanual arm motions that induce the demonstrated object part motion. By representing demonstrations as part-centric trajectories, RSRD focuses on replicating the demonstration's intended behavior while considering the robot's own morphological limits, rather than attempting to reproduce the hand's motion. We evaluate 4D-DPM's 3D tracking accuracy on ground truth annotated 3D part trajectories and RSRD's physical execution performance on 9 objects across 10 trials each on a bimanual YuMi robot. Each phase of RSRD achieves an average of 87% success rate, for a total end-to-end success rate of 60% across 90 trials. Notably, this is accomplished using only feature fields distilled from large pretrained vision models -- without any task-specific training, fine-tuning, dataset collection, or annotation. Project page: //robot-see-robot-do.github.io

AI agents are increasingly autonomous in their interactions with human users and tools, leading to increased interactional safety risks. We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions. HAICOSYSTEM features a modular sandbox environment that simulates multi-turn interactions between human users and AI agents, where the AI agents are equipped with a variety of tools (e.g., patient management platforms) to navigate diverse scenarios (e.g., a user attempting to access other patients' profiles). To examine the safety of AI agents in these interactions, we develop a comprehensive multi-dimensional evaluation framework that uses metrics covering operational, content-related, societal, and legal risks. Through running 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education), we demonstrate that HAICOSYSTEM can emulate realistic user-AI interactions and complex tool use by AI agents. Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50\% cases, with models generally showing higher risks when interacting with simulated malicious users. Our findings highlight the ongoing challenge of building agents that can safely navigate complex interactions, particularly when faced with malicious users. To foster the AI agent safety ecosystem, we release a code platform that allows practitioners to create custom scenarios, simulate interactions, and evaluate the safety and performance of their agents.

In complex missions such as search and rescue,robots must make intelligent decisions in unknown environments, relying on their ability to perceive and understand their surroundings. High-quality and real-time reconstruction enhances situational awareness and is crucial for intelligent robotics. Traditional methods often struggle with poor scene representation or are too slow for real-time use. Inspired by the efficacy of 3D Gaussian Splatting (3DGS), we propose a hierarchical planning framework for fast and high-fidelity active reconstruction. Our method evaluates completion and quality gain to adaptively guide reconstruction, integrating global and local planning for efficiency. Experiments in simulated and real-world environments show our approach outperforms existing real-time methods.

Automated decision-making systems are becoming increasingly ubiquitous, which creates an immediate need for their interpretability and explainability. However, it remains unclear whether users know what insights an explanation offers and, more importantly, what information it lacks. To answer this question we conducted an online study with 200 participants, which allowed us to assess explainees' ability to realise explicated information -- i.e., factual insights conveyed by an explanation -- and unspecified information -- i.e, insights that are not communicated by an explanation -- across four representative explanation types: model architecture, decision surface visualisation, counterfactual explainability and feature importance. Our findings uncover that highly comprehensible explanations, e.g., feature importance and decision surface visualisation, are exceptionally susceptible to misinterpretation since users tend to infer spurious information that is outside of the scope of these explanations. Additionally, while the users gauge their confidence accurately with respect to the information explicated by these explanations, they tend to be overconfident when misinterpreting the explanations. Our work demonstrates that human comprehension can be a double-edged sword since highly accessible explanations may convince users of their truthfulness while possibly leading to various misinterpretations at the same time. Machine learning explanations should therefore carefully navigate the complex relation between their full scope and limitations to maximise understanding and curb misinterpretation.

Evaluation of policies in recommender systems typically involves A/B testing using live experiments on real users to assess a new policy's impact on relevant metrics. This ``gold standard'' comes at a high cost, however, in terms of cycle time, user cost, and potential user retention. In developing policies for ``onboarding'' new users, these costs can be especially problematic, since on-boarding occurs only once. In this work, we describe a simulation methodology used to augment (and reduce) the use of live experiments. We illustrate its deployment for the evaluation of ``preference elicitation'' algorithms used to onboard new users of the YouTube Music platform. By developing counterfactually robust user behavior models, and a simulation service that couples such models with production infrastructure, we are able to test new algorithms in a way that reliably predicts their performance on key metrics when deployed live. We describe our domain, our simulation models and platform, results of experiments and deployment, and suggest future steps needed to further realistic simulation as a powerful complement to live experiments.

Bias auditing of language models (LMs) has received considerable attention as LMs are becoming widespread. As such, several benchmarks for bias auditing have been proposed. At the same time, the rapid evolution of LMs can make these benchmarks irrelevant in no time. Bias auditing is further complicated by LM brittleness: when a presumably biased outcome is observed, is it due to model bias or model brittleness? We propose enlisting the models themselves to help construct bias auditing datasets that remain challenging, and introduce bias measures that distinguish between different types of model errors. First, we extend an existing bias benchmark for NLI (BBNLI) using a combination of LM-generated lexical variations, adversarial filtering, and human validation. We demonstrate that the newly created dataset BBNLI-next is more challenging than BBNLI: on average, BBNLI-next reduces the accuracy of state-of-the-art NLI models from 95.3%, as observed by BBNLI, to a strikingly low 57.5%. Second, we employ BBNLI-next to showcase the interplay between robustness and bias: we point out shortcomings in current bias scores and propose bias measures that take into account both bias and model brittleness. Third, despite the fact that BBNLI-next was designed with non-generative models in mind, we show that the new dataset is also able to uncover bias in state-of-the-art open-source generative LMs. Note: All datasets included in this work are in English and they address US-centered social biases. In the spirit of efficient NLP research, no model training or fine-tuning was performed to conduct this research. Warning: This paper contains offensive text examples.

We introduce the problem of determining the identity of a byzantine user (internal adversary) in a communication system. We consider a two-user discrete memoryless multiple access channel where either user may deviate from the prescribed behaviour. Since small deviations may be indistinguishable from the effects of channel noise, it might be overly restrictive to attempt to detect all deviations. When neither user deviates, correct decoding is required. When one user deviates, the decoder must either output a pair of messages of which the message of the non-deviating user is correct or identify the deviating user. The users and the receiver do not share any randomness. The results include a characterization of the set of channels where communication is feasible, and an inner and outer bound on the capacity region. We also show that whenever the rate region has non-empty interior, the capacity region is same as the capacity region under randomized encoding, where each user shares independent randomness with the receiver. We also give an outer bound for this randomized coding capacity region.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司