亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study examines clusterability testing for a signed graph in the bounded-degree model. Our contributions are two-fold. First, we provide a quantum algorithm with query complexity $\tilde{O}(N^{1/3})$ for testing clusterability, which yields a polynomial speedup over the best classical clusterability tester known [arXiv:2102.07587]. Second, we prove an $\tilde{\Omega}(\sqrt{N})$ classical query lower bound for testing clusterability, which nearly matches the upper bound from [arXiv:2102.07587]. This settles the classical query complexity of clusterability testing, and it shows that our quantum algorithm has an advantage over any classical algorithm.

相關內容

Regularization promotes well-posedness in solving an inverse problem with incomplete measurement data. The regularization term is typically designed based on a priori characterization of the unknown signal, such as sparsity or smoothness. The standard inhomogeneous regularization incorporates a spatially changing exponent $p$ of the standard $\ell_p$ norm-based regularization to recover a signal whose characteristic varies spatially. This study proposes a weighted inhomogeneous regularization that extends the standard inhomogeneous regularization through new exponent design and weighting using spatially varying weights. The new exponent design avoids misclassification when different characteristics stay close to each other. The weights handle another issue when the region of one characteristic is too small to be recovered effectively by the $\ell_p$ norm-based regularization even after identified correctly. A suite of numerical tests shows the efficacy of the proposed weighted inhomogeneous regularization, including synthetic image experiments and real sea ice recovery from its incomplete wave measurements.

We propose a deep learning based method for simulating the large bending deformation of bilayer plates. Inspired by the greedy algorithm, we propose a pre-training method on a series of nested domains, which accelerate the convergence of training and find the absolute minimizer more effectively. The proposed method exhibits the capability to converge to an absolute minimizer, overcoming the limitation of gradient flow methods getting trapped in the local minimizer basins. We showcase better performance with fewer numbers of degrees of freedom for the relative energy errors and relative $L^2$-errors of the minimizer through numerical experiments. Furthermore, our method successfully maintains the $L^2$-norm of the isometric constraint, leading to an improvement of accuracy.

This article studies the use of asymmetric loss functions for the optimal prediction of positive-valued spatial processes. We focus on the family of power-divergence loss functions due to its many convenient properties, such as its continuity, convexity, relationship to well known divergence measures, and the ability to control the asymmetry and behaviour of the loss function via a power parameter. The properties of power-divergence loss functions, optimal power-divergence (OPD) spatial predictors, and related measures of uncertainty quantification are examined. In addition, we examine the notion of asymmetry in loss functions defined for positive-valued spatial processes and define an asymmetry measure that is applied to the power-divergence loss function and other common loss functions. The paper concludes with a spatial statistical analysis of zinc measurements in the soil of a floodplain of the Meuse River, Netherlands, using OPD spatial prediction.

The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the asymptotic spectral distribution of matrices $A_n$ arising from numerical discretizations of differential equations. Indeed, when the mesh fineness parameter $n$ tends to infinity, these matrices $A_n$ give rise to a sequence $\{A_n\}_n$, which often turns out to be a GLT sequence. In this paper, we extend the theory of GLT sequences in several directions: we show that every GLT sequence enjoys a normal form, we identify the spectral symbol of every GLT sequence formed by normal matrices, and we prove that, for every GLT sequence $\{A_n\}_n$ formed by normal matrices and every continuous function $f:\mathbb C\to\mathbb C$, the sequence $\{f(A_n)\}_n$ is again a GLT sequence whose spectral symbol is $f(\kappa)$, where $\kappa$ is the spectral symbol of $\{A_n\}_n$. In addition, using the theory of GLT sequences, we prove a spectral distribution result for perturbed normal matrices.

We explore Langevin dynamics in the spherical Sherrington-Kirkpatrick model, delving into the asymptotic energy limit. Our approach involves integro-differential equations, incorporating the Crisanti-Horner-Sommers-Cugliandolo-Kurchan equation from spin glass literature, to analyze the system's size and its temperature-dependent phase transition. Additionally, we conduct an average case complexity analysis, establishing hitting time bounds for the bottom eigenvector of a Wigner matrix. Our investigation also includes the power iteration algorithm, examining its average case complexity in identifying the top eigenvector overlap, with comprehensive complexity bounds.

In the present paper, we propose a block variant of the extended Hessenberg process for computing approximations of matrix functions and other problems producing large-scale matrices. Applications to the computation of a matrix function such as f(A)V, where A is an nxn large sparse matrix, V is an nxp block with p<<n, and f is a function are presented. Solving shifted linear systems with multiple right hand sides are also given. Computing approximations of these matrix problems appear in many scientific and engineering applications. Different numerical experiments are provided to show the effectiveness of the proposed method for these problems.

This study develops a computationally efficient phase-field lattice Boltzmann model with the capability to simulate thermocapillary flows. The model was implemented into the open-source simulation framework, waLBerla, and extended to conduct the collision stage using central moments. The multiphase model was coupled with both a passive-scalar thermal LB, and a RK solution to the energy equation in order to resolve temperature-dependent surface tension phenomena. Various lattice stencils (D3Q7, D3Q15, D3Q19, D3Q27) were tested for the passive-scalar LB and both the second- and fourth-order RK methods were investigated. There was no significant difference observed in the accuracy of the LB or RK schemes. The passive scalar D3Q7 LB discretisation tended to provide computational benefits, while the second order RK scheme is superior in memory usage. This paper makes contributions relating to the modelling of thermocapillary flows and to understanding the behaviour of droplet capture with thermal sources analogous to thermal tweezers. Four primary contributions to the literature are identified. First, a new 3D thermocapillary, central-moment phase-field LB model is presented and implemented in the open-source software, waLBerla. Second, the accuracy and computational performance of various techniques to resolve the energy equation for multiphase, incompressible fluids is investigated. Third, the dynamic droplet transport behaviour in the presence of thermal sources is studied and insight is provided on the potential ability to manipulate droplets based on local domain heating. Finally, a concise analysis of the computational performance together with near-perfect scaling results on NVIDIA and AMD GPU-clusters is shown. This research enables the detailed study of droplet manipulation and control in thermocapillary devices.

This work deals with an inverse source problem for the biharmonic wave equation. A two-stage numerical method is proposed to identify the unknown source from the multi-frequency phaseless data. In the first stage, we introduce some artificially auxiliary point sources to the inverse source system and establish a phase retrieval formula. Theoretically, we point out that the phase can be uniquely determined and estimate the stability of this phase retrieval approach. Once the phase information is retrieved, the Fourier method is adopted to reconstruct the source function from the phased multi-frequency data. The proposed method is easy-to-implement and there is no forward solver involved in the reconstruction. Numerical experiments are conducted to verify the performance of the proposed method.

Sequential optimization methods are often confronted with the curse of dimensionality in high-dimensional spaces. Current approaches under the Gaussian process framework are still burdened by the computational complexity of tracking Gaussian process posteriors and need to partition the optimization problem into small regions to ensure exploration or assume an underlying low-dimensional structure. With the idea of transiting the candidate points towards more promising positions, we propose a new method based on Markov Chain Monte Carlo to efficiently sample from an approximated posterior. We provide theoretical guarantees of its convergence in the Gaussian process Thompson sampling setting. We also show experimentally that both the Metropolis-Hastings and the Langevin Dynamics version of our algorithm outperform state-of-the-art methods in high-dimensional sequential optimization and reinforcement learning benchmarks.

The present work is devoted to strong approximations of a generalized Ait-Sahalia model arising from mathematical finance. The numerical study of the considered model faces essential difficulties caused by a drift that blows up at the origin, highly nonlinear drift and diffusion coefficients and positivity-preserving requirement. In this paper, a novel explicit Euler-type scheme is proposed, which is easily implementable and able to preserve positivity of the original model unconditionally, i.e., for any time step-size h>0. A mean-square convergence rate of order 0.5 is also obtained for the proposed scheme in both non-critical and general critical cases. Our work is motivated by the need to justify the multi-level Monte Carlo (MLMC) simulations for the underlying model, where the rate of mean-square convergence is required and the preservation of positivity is desirable particularly for large discretization time steps. To the best of our knowledge, this is the first paper to propose an unconditionally positivity preserving explicit scheme with order 1/2 of mean-square convergence for the model. Numerical experiments are finally provided to confirm the theoretical findings.

北京阿比特科技有限公司