Underwater image enhancement (UIE) aims to generate clear images from low-quality underwater images. Due to the unavailability of clear reference images, researchers often synthesize them to construct paired datasets for training deep models. However, these synthesized images may sometimes lack quality, adversely affecting training outcomes. To address this issue, we propose UIE with Diffusion Prior (UIEDP), a novel framework treating UIE as a posterior distribution sampling process of clear images conditioned on degraded underwater inputs. Specifically, UIEDP combines a pre-trained diffusion model capturing natural image priors with any existing UIE algorithm, leveraging the latter to guide conditional generation. The diffusion prior mitigates the drawbacks of inferior synthetic images, resulting in higher-quality image generation. Extensive experiments have demonstrated that our UIEDP yields significant improvements across various metrics, especially no-reference image quality assessment. And the generated enhanced images also exhibit a more natural appearance.
Diffusion models are capable of generating impressive images conditioned on text descriptions, and extensions of these models allow users to edit images at a relatively coarse scale. However, the ability to precisely edit the layout, position, pose, and shape of objects in images with diffusion models is still difficult. To this end, we propose motion guidance, a zero-shot technique that allows a user to specify dense, complex motion fields that indicate where each pixel in an image should move. Motion guidance works by steering the diffusion sampling process with the gradients through an off-the-shelf optical flow network. Specifically, we design a guidance loss that encourages the sample to have the desired motion, as estimated by a flow network, while also being visually similar to the source image. By simultaneously sampling from a diffusion model and guiding the sample to have low guidance loss, we can obtain a motion-edited image. We demonstrate that our technique works on complex motions and produces high quality edits of real and generated images.
Despite the impressive capabilities of Multimodal Large Language Models (MLLMs) in integrating text and image modalities, challenges remain in accurately interpreting detailed visual elements. This paper presents an empirical study on enhancing MLLMs with state-of-the-art (SOTA) object detection and Optical Character Recognition models to improve fine-grained image understanding and reduce hallucination in responses. Our research investigates the embedding-based infusion of detection information, the impact of such infusion on the MLLMs' original abilities, and the interchangeability of detection models. We conduct systematic experiments with models such as LLaVA-1.5, DINO, and PaddleOCRv2, revealing that our approach not only refines MLLMs' performance in specific visual tasks but also maintains their original strengths. The resulting enhanced MLLMs outperform SOTA models on 9 out of 10 benchmarks, achieving an improvement of up to 12.99% on the normalized average score, marking a notable advancement in multimodal understanding. We release our codes to facilitate further exploration into the fine-grained multimodal dialogue capabilities of MLLMs.
With recent text-to-image models, anyone can generate deceptively realistic images with arbitrary contents, fueling the growing threat of visual disinformation. A key enabler for generating high-resolution images with low computational cost has been the development of latent diffusion models (LDMs). In contrast to conventional diffusion models, LDMs perform the denoising process in the low-dimensional latent space of a pre-trained autoencoder (AE) instead of the high-dimensional image space. Despite their relevance, the forensic analysis of LDMs is still in its infancy. In this work we propose AEROBLADE, a novel detection method which exploits an inherent component of LDMs: the AE used to transform images between image and latent space. We find that generated images can be more accurately reconstructed by the AE than real images, allowing for a simple detection approach based on the reconstruction error. Most importantly, our method is easy to implement and does not require any training, yet nearly matches the performance of detectors that rely on extensive training. We empirically demonstrate that AEROBLADE is effective against state-of-the-art LDMs including Stable Diffusion and Midjourney. Beyond detection, our approach allows for the qualitative analysis of images, which can be leveraged for identifying inpainted regions.
The Segment Anything Model (SAM) stands as a foundational framework for image segmentation. While it exhibits remarkable zero-shot generalization in typical scenarios, its advantage diminishes when applied to specialized domains like medical imagery and remote sensing. To address this limitation, this paper introduces Conv-LoRA, a simple yet effective parameter-efficient fine-tuning approach. By integrating ultra-lightweight convolutional parameters into Low-Rank Adaptation (LoRA), Conv-LoRA can inject image-related inductive biases into the plain ViT encoder, further reinforcing SAM's local prior assumption. Notably, Conv-LoRA not only preserves SAM's extensive segmentation knowledge but also revives its capacity of learning high-level image semantics, which is constrained by SAM's foreground-background segmentation pretraining. Comprehensive experimentation across diverse benchmarks spanning multiple domains underscores Conv-LoRA's superiority in adapting SAM to real-world semantic segmentation tasks.
We propose the structure and color based learned image codec (SLIC) in which the task of compression is split into that of luminance and chrominance. The deep learning model is built with a novel multi-scale architecture for Y and UV channels in the encoder, where the features from various stages are combined to obtain the latent representation. An autoregressive context model is employed for backward adaptation and a hyperprior block for forward adaptation. Various experiments are carried out to study and analyze the performance of the proposed model, and to compare it with other image codecs. We also illustrate the advantages of our method through the visualization of channel impulse responses, latent channels and various ablation studies. The model achieves Bj{\o}ntegaard delta bitrate gains of 7.5% and 4.66% in terms of MS-SSIM and CIEDE2000 metrics with respect to other state-of-the-art reference codecs.
This paper presents LatentPatch, a new method for generating realistic images from a small dataset of only a few images. We use a lightweight model with only a few thousand parameters. Unlike traditional few-shot generation methods that finetune pre-trained large-scale generative models, our approach is computed directly on the latent distribution by sequential feature matching, and is explainable by design. Avoiding large models based on transformers, recursive networks, or self-attention, which are not suitable for small datasets, our method is inspired by non-parametric texture synthesis and style transfer models, and ensures that generated image features are sampled from the source distribution. We extend previous single-image models to work with a few images and demonstrate that our method can generate realistic images, as well as enable conditional sampling and image editing. We conduct experiments on face datasets and show that our simplistic model is effective and versatile.
Recently, text-to-image diffusion models have demonstrated impressive ability to generate high-quality images conditioned on the textual input. However, these models struggle to accurately adhere to textual instructions regarding spatial layout information. While previous research has primarily focused on aligning cross-attention maps with layout conditions, they overlook the impact of the initialization noise on the layout guidance. To achieve better layout control, we propose leveraging a spatial-aware initialization noise during the denoising process. Specifically, we find that the inverted reference image with finite inversion steps contains valuable spatial awareness regarding the object's position, resulting in similar layouts in the generated images. Based on this observation, we develop an open-vocabulary framework to customize a spatial-aware initialization noise for each layout condition. Without modifying other modules except the initialization noise, our approach can be seamlessly integrated as a plug-and-play module within other training-free layout guidance frameworks. We evaluate our approach quantitatively and qualitatively on the available Stable Diffusion model and COCO dataset. Equipped with the spatial-aware latent initialization, our method significantly improves the effectiveness of layout guidance while preserving high-quality content.
Multimodal Large Language Models (MLLMs) demonstrate impressive image understanding and generating capabilities. However, existing benchmarks employ limited charts that deviate from real-world scenarios, posing challenges in accurately assessing the chart comprehension of MLLMs. To overcome this constraint, we propose ChartBench, an exhaustive chart benchmark specifically designed to evaluate MLLMs' chart comprehension and data reliability through complex visual reasoning. ChartBench encompasses a wide spectrum, including 42 categories, 2.1K charts, and 16.8K question-answer pairs. Diverging from previous benchmarks, ChartBench avoids employing data point annotation charts or metadata prompts directly. Instead, it compels MLLMs to derive values akin to human understanding by leveraging inherent chart elements such as color, legends, or coordinate systems. Additionally, we propose an enhanced evaluation metric, Acc+, which facilitates the evaluation of MLLMs without needing labor-intensive manual efforts or costly evaluations based on GPT. Our extensive experimental evaluation involves 12 widely-used open-sourced and 2 proprietary MLLMs, revealing the limitations of MLLMs in interpreting charts and providing valuable insights to encourage closer scrutiny of this aspect.
Linguistic Steganography (LS) tasks aim to generate steganographic texts (stego) based on secret information. Only authorized recipients can perceive the existence of secret information in the texts and accurately extract it, thereby preserving privacy. However, the controllability of the stego generated by existing schemes is poor, and the generated stego is difficult to contain specific discourse characteristics such as style, genre, and theme. As a result, the stego are often easily detectable, compromising covert communication. To address these problems, this paper proposes a novel scheme named LLsM, a generative LS based on a Large Language Model (LLM). We fine-tuned the LLM LLaMA2 with a large-scale constructed dataset encompassing rich discourse characteristics, which enables the fine-tuned LLM to generate texts with specific discourse in a controllable manner. Then the discourse characteristics are used as guiding information and inputted into the fine-tuned LLM in the form of Prompt together with secret information. The candidate pool, derived from sampling and truncation, undergoes range encoding to ensure the stego imitate natural text distribution. Experiments demonstrate that LLsM performs superior to prevalent baselines regarding text quality, statistical analysis, discourse matching, and anti-steganalysis. In particular, LLsM's MAUVE surpasses that of some baselines by 70%-80%, and its anti-steganalysis performance is 30%-40% higher. Notably, we also present the long stego generated by LLsM, showing its potential superiority in long LS tasks.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.