亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep neural networks (DNNs) have revolutionized artificial intelligence but often lack performance when faced with out-of-distribution (OOD) data, a common scenario due to the inevitable domain shifts in real-world applications. This limitation stems from the common assumption that training and testing data share the same distribution--an assumption frequently violated in practice. Despite their effectiveness with large amounts of data and computational power, DNNs struggle with distributional shifts and limited labeled data, leading to overfitting and poor generalization across various tasks and domains. Meta-learning presents a promising approach by employing algorithms that acquire transferable knowledge across various tasks for fast adaptation, eliminating the need to learn each task from scratch. This survey paper delves into the realm of meta-learning with a focus on its contribution to domain generalization. We first clarify the concept of meta-learning for domain generalization and introduce a novel taxonomy based on the feature extraction strategy and the classifier learning methodology, offering a granular view of methodologies. Additionally, we present a decision graph to assist readers in navigating the taxonomy based on data availability and domain shifts, enabling them to select and develop a proper model tailored to their specific problem requirements. Through an exhaustive review of existing methods and underlying theories, we map out the fundamentals of the field. Our survey provides practical insights and an informed discussion on promising research directions.

相關內容

Large language models (LLMs) demonstrate impressive performance on a wide variety of tasks, but they often struggle with tasks that require multi-step reasoning or goal-directed planning. Both cognitive neuroscience and reinforcement learning (RL) have proposed a number of interacting functional components that together implement search and evaluation in multi-step decision making. These components include conflict monitoring, state prediction, state evaluation, task decomposition, and orchestration. To improve planning with LLMs, we propose an agentic architecture, the Modular Agentic Planner (MAP), in which planning is accomplished via the recurrent interaction of the specialized modules mentioned above, each implemented using an LLM. MAP improves planning through the interaction of specialized modules that break down a larger problem into multiple brief automated calls to the LLM. We evaluate MAP on three challenging planning tasks -- graph traversal, Tower of Hanoi, and the PlanBench benchmark -- as well as an NLP task requiring multi-step reasoning (strategyQA). We find that MAP yields significant improvements over both standard LLM methods (zero-shot prompting, in-context learning) and competitive baselines (chain-of-thought, multi-agent debate, and tree-of-thought), can be effectively combined with smaller and more cost-efficient LLMs (Llama3-70B), and displays superior transfer across tasks. These results suggest the benefit of a modular and multi-agent approach to planning with LLMs.

Spiking neural networks (SNNs) are posited as a computationally efficient and biologically plausible alternative to conventional neural architectures, with their core computational framework primarily using the leaky integrate-and-fire (LIF) neuron model. However, the limited hidden state representation of LIF neurons, characterized by a scalar membrane potential, and sequential spike generation process, poses challenges for effectively developing scalable spiking models to address long-range dependencies in sequence learning tasks. In this study, we develop a scalable probabilistic spiking learning framework for long-range dependency tasks leveraging the fundamentals of state space models. Unlike LIF neurons that rely on the determinitic Heaviside function for a sequential process of spike generation, we introduce a SpikeSampler layer that samples spikes stochastically based on an SSM-based neuronal model while allowing parallel computations. To address non-differentiability of the spiking operation and enable effective training, we also propose a surrogate function tailored for the stochastic nature of the SpikeSampler layer. To enhance inter-neuron communication, we introduce the SpikeMixer block, which integrates spikes from neuron populations in each layer. This is followed by a ClampFuse layer, incorporating a residual connection to capture complex dependencies, enabling scalability of the model. Our models attain state-of-the-art performance among SNN models across diverse long-range dependency tasks, encompassing the Long Range Arena benchmark, permuted sequential MNIST, and the Speech Command dataset and demonstrate sparse spiking pattern highlighting its computational efficiency.

Physics-informed neural networks (PINNs) have emerged as a versatile and widely applicable concept across various science and engineering domains over the past decade. This article offers a comprehensive overview of the fundamentals of PINNs, tracing their evolution, modifications, and various variants. It explores the impact of different parameters on PINNs and the optimization algorithms involved. The review also delves into the theoretical advancements related to the convergence, consistency, and stability of numerical solutions using PINNs, while highlighting the current state of the art. Given their ability to address equations involving complex physics, the article discusses various applications of PINNs, with a particular focus on their utility in computational fluid dynamics problems. Additionally, it identifies current gaps in the research and outlines future directions for the continued development of PINNs.

Large language models (LLMs) have achieved superior performance in powering text-based AI agents, endowing them with decision-making and reasoning abilities akin to humans. Concurrently, there is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain. This extension enables AI agents to interpret and respond to diverse multimodal user queries, thereby handling more intricate and nuanced tasks. In this paper, we conduct a systematic review of LLM-driven multimodal agents, which we refer to as large multimodal agents ( LMAs for short). First, we introduce the essential components involved in developing LMAs and categorize the current body of research into four distinct types. Subsequently, we review the collaborative frameworks integrating multiple LMAs , enhancing collective efficacy. One of the critical challenges in this field is the diverse evaluation methods used across existing studies, hindering effective comparison among different LMAs . Therefore, we compile these evaluation methodologies and establish a comprehensive framework to bridge the gaps. This framework aims to standardize evaluations, facilitating more meaningful comparisons. Concluding our review, we highlight the extensive applications of LMAs and propose possible future research directions. Our discussion aims to provide valuable insights and guidelines for future research in this rapidly evolving field. An up-to-date resource list is available at //github.com/jun0wanan/awesome-large-multimodal-agents.

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Training machines to understand natural language and interact with humans is an elusive and essential task of artificial intelligence. A diversity of dialogue systems has been designed with the rapid development of deep learning techniques, especially the recent pre-trained language models (PrLMs). Among these studies, the fundamental yet challenging type of task is dialogue comprehension whose role is to teach the machines to read and comprehend the dialogue context before responding. In this paper, we review the previous methods from the technical perspective of dialogue modeling for the dialogue comprehension task. We summarize the characteristics and challenges of dialogue comprehension in contrast to plain-text reading comprehension. Then, we discuss three typical patterns of dialogue modeling. In addition, we categorize dialogue-related pre-training techniques which are employed to enhance PrLMs in dialogue scenarios. Finally, we highlight the technical advances in recent years and point out the lessons from the empirical analysis and the prospects towards a new frontier of researches.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.

北京阿比特科技有限公司