亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $\mathcal{T}$ be a set of $n$ flat (planar) semi-algebraic regions in $\mathbb{R}^3$ of constant complexity (e.g., triangles, disks), which we call plates. We wish to preprocess $\mathcal{T}$ into a data structure so that for a query object $\gamma$, which is also a plate, we can quickly answer various intersection queries, such as detecting whether $\gamma$ intersects any plate of $\mathcal{T}$, reporting all the plates intersected by $\gamma$, or counting them. We also consider two simpler cases of this general setting: (i) the input objects are plates and the query objects are constant-degree parametrized algebraic arcs in $\mathbb{R}^3$ (arcs, for short), or (ii) the input objects are arcs and the query objects are plates in $\mathbb{R}^3$. Besides being interesting in their own right, the data structures for these two special cases form the building blocks for handling the general case. By combining the polynomial-partitioning technique with additional tools from real algebraic geometry, we present many different data structures for intersection queries, which also provide trade-offs between their size and query time. For example, if $\mathcal{T}$ is a set of plates and the query objects are algebraic arcs, we obtain a data structure that uses $O^*(n^{4/3})$ storage (where the $O^*(\cdot)$ notation hides subpolynomial factors) and answers an arc-intersection query in $O^*(n^{2/3})$ time. This result is significant since the exponents do not depend on the specific shape of the input and query objects. For a parameter $s\in [n^{4/3}, n^{t_Q}]$ where $t_Q\ge 3$ is the number of real parameters needed to specify a query arc, the query time can be decreased to $O^*((n/s^{1/t_Q})^{\tfrac{2}{3}(1-1/t_Q)})$ by increasing the storage to $O^*(s)$.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體系結構和綜合國際會議。 Publisher:ACM。 SIT:

In the classical transformer attention scheme, we are given three $n \times d$ size matrices $Q, K, V$ (the query, key, and value tokens), and the goal is to compute a new $n \times d$ size matrix $D^{-1} \exp(QK^\top) V$ where $D = \mathrm{diag}( \exp(QK^\top) {\bf 1}_n )$. In this work, we study a generalization of attention which captures triple-wise correlations. This generalization is able to solve problems about detecting triple-wise connections that were shown to be impossible for transformers. The potential downside of this generalization is that it appears as though computations are even more difficult, since the straightforward algorithm requires cubic time in $n$. However, we show that in the bounded-entry setting (which arises in practice, and which is well-studied in both theory and practice), there is actually a near-linear time algorithm. More precisely, we show that bounded entries are both necessary and sufficient for quickly performing generalized computations: $\bullet$ On the positive side, if all entries of the input matrices are bounded above by $o(\sqrt[3]{\log n})$ then we show how to approximate the ``tensor-type'' attention matrix in $n^{1+o(1)}$ time. $\bullet$ On the negative side, we show that if the entries of the input matrices may be as large as $\Omega(\sqrt[3]{\log n})$, then there is no algorithm that runs faster than $n^{3-o(1)}$ (assuming the Strong Exponential Time Hypothesis from fine-grained complexity theory). We also show that our construction, algorithms, and lower bounds naturally generalize to higher-order tensors and correlations. Interestingly, the higher the order of the tensors, the lower the bound on the entries needs to be for an efficient algorithm. Our results thus yield a natural tradeoff between the boundedness of the entries, and order of the tensor one may use for more expressive, efficient attention computation.

In this paper, we prove the following non-linear generalization of the classical Sylvester-Gallai theorem. Let $\mathbb{K}$ be an algebraically closed field of characteristic $0$, and $\mathcal{F}=\{F_1,\cdots,F_m\} \subset \mathbb{K}[x_1,\cdots,x_N]$ be a set of irreducible homogeneous polynomials of degree at most $d$ such that $F_i$ is not a scalar multiple of $F_j$ for $i\neq j$. Suppose that for any two distinct $F_i,F_j\in \mathcal{F}$, there is $k\neq i,j$ such that $F_k\in \mathrm{rad}(F_i,F_j)$. We prove that such radical SG configurations must be low dimensional. More precisely, we show that there exists a function $\lambda : \mathbb{N} \to \mathbb{N}$, independent of $\mathbb{K},N$ and $m$, such that any such configuration $\mathcal{F}$ must satisfy $$ \dim (\mathrm{span}_{\mathbb{K}}{\mathcal{F}}) \leq \lambda(d). $$ Our result confirms a conjecture of Gupta [Gup14, Conjecture 2] and generalizes the quadratic and cubic Sylvester-Gallai theorems of [S20,OS22]. Our result takes us one step closer towards the first deterministic polynomial time algorithm for the Polynomial Identity Testing (PIT) problem for depth-4 circuits of bounded top and bottom fanins. Our result, when combined with the Stillman uniformity type results of [AH20a,DLL19,ESS21], yields uniform bounds for several algebraic invariants such as projective dimension, Betti numbers and Castelnuovo-Mumford regularity of ideals generated by radical SG configurations.

Stein's unbiased risk estimate (SURE) gives an unbiased estimate of the $\ell_2$ risk of any estimator of the mean of a Gaussian random vector. We focus here on the case when the estimator minimizes a quadratic loss term plus a convex regularizer. For these estimators SURE can be evaluated analytically for a few special cases, and generically using recently developed general purpose methods for differentiating through convex optimization problems; these generic methods however do not scale to large problems. In this paper we describe methods for evaluating SURE that handle a wide class of estimators, and also scale to large problem sizes.

We formalize and interpret the geometric structure of $d$-dimensional fully connected ReLU-layers in neural networks. The parameters of a ReLU-layer induce a natural partition of the input domain, such that in each sector of the partition, the ReLU-layer can be greatly simplified. This leads to a geometric interpretation of a ReLU-layer as a projection onto a polyhedral cone followed by an affine transformation, in line with the description in [doi:10.48550/arXiv.1905.08922] for convolutional networks with ReLU activations. Further, this structure facilitates simplified expressions for preimages of the intersection between partition sectors and hyperplanes, which is useful when describing decision boundaries in a classification setting. We investigate this in detail for a feed-forward network with one hidden ReLU-layer, where we provide results on the geometric complexity of the decision boundary generated by such networks, as well as proving that modulo an affine transformation, such a network can only generate $d$ different decision boundaries. Finally, the effect of adding more layers to the network is discussed.

For numerous graph problems in the realm of parameterized algorithms, using the size of a smallest deletion set (called a modulator) into well-understood graph families as parameterization has led to a long and successful line of research. Recently, however, there has been an extensive study of structural parameters that are potentially much smaller than the modulator size. In particular, recent papers [Jansen et al. STOC 2021; Agrawal et al. SODA 2022] have studied parameterization by the size of the modulator to a graph family $\mathcal{H}$ ($\textbf{mod}_{\mathcal{H}}$), elimination distance to $\mathcal{H}$ ($\textbf{ed}_{\mathcal{H}}$), and $\mathcal{H}$-treewidth ($\textbf{tw}_{\mathcal{H}}$). While these new parameters have been successfully exploited to design fast exact algorithms their utility (especially that of latter two) in the context of approximation algorithms is mostly unexplored. The conceptual contribution of this paper is to present novel algorithmic meta-theorems that expand the impact of these structural parameters to the area of FPT Approximation, mirroring their utility in the design of exact FPT algorithms. Precisely, we show that if a covering or packing problem is definable in Monadic Second Order Logic and has a property called Finite Integer Index, then the existence of an FPT Approximation Scheme (FPT-AS, i.e., ($1\pm \epsilon$)-approximation) parameterized these three parameters is in fact equivalent. As concrete exemplifications of our meta-theorems, we obtain FPT-ASes for well-studied graph problems such as Vertex Cover, Feedback Vertex Set, Cycle Packing and Dominating Set, parameterized by these three parameters.

Diffusion models are a powerful class of generative models which simulate stochastic differential equations (SDEs) to generate data from noise. Although diffusion models have achieved remarkable progress in recent years, they have limitations in the unpaired image-to-image translation tasks due to the Gaussian prior assumption. Schr\"odinger Bridge (SB), which learns an SDE to translate between two arbitrary distributions, have risen as an attractive solution to this problem. However, none of SB models so far have been successful at unpaired translation between high-resolution images. In this work, we propose the Unpaired Neural Schr\"odinger Bridge (UNSB), which expresses SB problem as a sequence of adversarial learning problems. This allows us to incorporate advanced discriminators and regularization to learn a SB between unpaired data. We demonstrate that UNSB is scalable and successfully solves various unpaired image-to-image translation tasks. Code: \url{//github.com/cyclomon/UNSB}

In this note, we give a linear-size translation from formulas of first-order logic into equations of the calculus of relations preserving validity and finite validity. Our translation also gives a linear-size conservative reduction from formulas of first-order logic into formulas of the three-variable fragment of first-order logic.

We consider the following natural problem that generalizes min-sum-radii clustering: Given is $k\in\mathbb{N}$ as well as some metric space $(V,d)$ where $V=F\cup C$ for facilities $F$ and clients $C$. The goal is to find a clustering given by $k$ facility-radius pairs $(f_1,r_1),\dots,(f_k,r_k)\in F\times\mathbb{R}_{\geq 0}$ such that $C\subseteq B(f_1,r_1)\cup\dots\cup B(f_k,r_k)$ and $\sum_{i=1,\dots,k} g(r_i)$ is minimized for some increasing function $g:\mathbb{R}_{\geq 0}\rightarrow\mathbb{R}_{\geq 0}$. Here, $B(x,r)$ is the radius-$r$ ball centered at $x$. For the case that $(V,d)$ is the shortest-path metric of some edge-weighted graph of bounded treewidth, we present a dynamic program that is tailored to this class of problems and achieves a polynomial running time, establishing that the problem is in $\mathsf{XP}$ with parameter treewidth.

With their unique combination of characteristics - an energy density almost 100 times that of human muscle, and a power density of 5.3 kW/kg, similar to a jet engine's output - Nylon artificial muscles stand out as particularly apt for robotics applications. However, the necessity of integrating sensors and controllers poses a limitation to their practical usage. Here we report a constant power open-loop controller based on machine learning. We show that we can control the position of a nylon artificial muscle without external sensors. To this end, we construct a mapping from a desired displacement trajectory to a required power using an ensemble encoder-style feed-forward neural network. The neural controller is carefully trained on a physics-based denoised dataset and can be fine-tuned to accommodate various types of thermal artificial muscles, irrespective of the presence or absence of hysteresis.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司