亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traditional manual detection for solder joint defect is no longer applied during industrial production due to low efficiency, inconsistent evaluation, high cost and lack of real-time data. A new approach has been proposed to address the issues of low accuracy, high false detection rates and computational cost of solder joint defect detection in surface mount technology of industrial scenarios. The proposed solution is a hybrid attention mechanism designed specifically for the solder joint defect detection algorithm to improve quality control in the manufacturing process by increasing the accuracy while reducing the computational cost. The hybrid attention mechanism comprises a proposed enhanced multi-head self-attention and coordinate attention mechanisms increase the ability of attention networks to perceive contextual information and enhances the utilization range of network features. The coordinate attention mechanism enhances the connection between different channels and reduces location information loss. The hybrid attention mechanism enhances the capability of the network to perceive long-distance position information and learn local features. The improved algorithm model has good detection ability for solder joint defect detection, with mAP reaching 91.5%, 4.3% higher than the You Only Look Once version 5 algorithm and better than other comparative algorithms. Compared to other versions, mean Average Precision, Precision, Recall, and Frame per Seconds indicators have also improved. The improvement of detection accuracy can be achieved while meeting real-time detection requirements.

相關內容

The presence of faulty or underactuated manipulators can disrupt the end-effector formation keeping of a team of manipulators. Based on two-link planar manipulators, we investigate this end-effector formation keeping problem for mixed fully- and under-actuated manipulators with flexible joints. In this case, the underactuated manipulators can comprise of active-passive (AP) manipulators, passive-active (PA) manipulators, or a combination thereof. We propose distributed control laws for the different types of manipulators to achieve and maintain the desired formation shape of the end-effectors. It is achieved by assigning virtual springs to the end-effectors for the fully-actuated ones and to the virtual end-effectors for the under-actuated ones. We study further the set of all desired and reachable shapes for the networked manipulators' end-effectors. Finally, we validate our analysis via numerical simulations.

Diffusion models have demonstrated remarkable performance in generation tasks. Nevertheless, explaining the diffusion process remains challenging due to it being a sequence of denoising noisy images that are difficult for experts to interpret. To address this issue, we propose the three research questions to interpret the diffusion process from the perspective of the visual concepts generated by the model and the region where the model attends in each time step. We devise tools for visualizing the diffusion process and answering the aforementioned research questions to render the diffusion process human-understandable. We show how the output is progressively generated in the diffusion process by explaining the level of denoising and highlighting relationships to foundational visual concepts at each time step through the results of experiments with various visual analyses using the tools. Throughout the training of the diffusion model, the model learns diverse visual concepts corresponding to each time-step, enabling the model to predict varying levels of visual concepts at different stages. We substantiate our tools using Area Under Cover (AUC) score, correlation quantification, and cross-attention mapping. Our findings provide insights into the diffusion process and pave the way for further research into explainable diffusion mechanisms.

The broad class of multivariate unified skew-normal (SUN) distributions has been recently shown to possess fundamental conjugacy properties. When used as priors for the vector of parameters in general probit, tobit, and multinomial probit models, these distributions yield posteriors that still belong to the SUN family. Although such a core result has led to important advancements in Bayesian inference and computation, its applicability beyond likelihoods associated with fully-observed, discretized, or censored realizations from multivariate Gaussian models remains yet unexplored. This article covers such an important gap by proving that the wider family of multivariate unified skew-elliptical (SUE) distributions, which extends SUNs to more general perturbations of elliptical densities, guarantees conjugacy for broader classes of models, beyond those relying on fully-observed, discretized or censored Gaussians. Such a result leverages the closure under linear combinations, conditioning and marginalization of SUE to prove that such a family is conjugate to the likelihood induced by general multivariate regression models for fully-observed, censored or dichotomized realizations from skew-elliptical distributions. This advancement substantially enlarges the set of models that enable conjugate Bayesian inference to general formulations arising from elliptical and skew-elliptical families, including the multivariate Student's t and skew-t, among others.

The spread of the Internet of Things (IoT) is demanding new, powerful architectures for handling the huge amounts of data produced by the IoT devices. In many scenarios, many existing isolated solutions applied to IoT devices use a set of rules to detect, report and mitigate malware activities or threats. This paper describes a development environment that allows the programming and debugging of such rule-based multi-agent solutions. The solution consists of the integration of a rule engine into the agent, the use of a specialized, wrapping agent class with a graphical user interface for programming and testing purposes, and a mechanism for the incremental composition of behaviors. Finally, a set of examples and a comparative study were accomplished to test the suitability and validity of the approach. The JADE multi-agent middleware has been used for the practical implementation of the approach.

Motivated by the important statistical role of sparsity, the paper uncovers four reparametrizations for covariance matrices in which sparsity is associated with conditional independence graphs in a notional Gaussian model. The intimate relationship between the Iwasawa decomposition of the general linear group and the open cone of positive definite matrices allows a unifying perspective. Specifically, the positive definite cone can be reconstructed without loss or redundancy from the exponential map applied to four Lie subalgebras determined by the Iwasawa decomposition of the general linear group. This accords geometric interpretations to the reparametrizations and the corresponding notion of sparsity. Conditions that ensure legitimacy of the reparametrizations for statistical models are identified. While the focus of this work is on understanding population-level structure, there are strong methodological implications. In particular, since the population-level sparsity manifests in a vector space, imposition of sparsity on relevant sample quantities produces a covariance estimate that respects the positive definite cone constraint.

Composite quantile regression has been used to obtain robust estimators of regression coefficients in linear models with good statistical efficiency. By revealing an intrinsic link between the composite quantile regression loss function and the Wasserstein distance from the residuals to the set of quantiles, we establish a generalization of the composite quantile regression to the multiple-output settings. Theoretical convergence rates of the proposed estimator are derived both under the setting where the additive error possesses only a finite $\ell$-th moment (for $\ell > 2$) and where it exhibits a sub-Weibull tail. In doing so, we develop novel techniques for analyzing the M-estimation problem that involves Wasserstein-distance in the loss. Numerical studies confirm the practical effectiveness of our proposed procedure.

We introduce a lower bounding technique for the min max correlation clustering problem and, based on this technique, a combinatorial 4-approximation algorithm for complete graphs. This improves upon the previous best known approximation guarantees of 5, using a linear program formulation (Kalhan et al., 2019), and 40, for a combinatorial algorithm (Davies et al., 2023a). We extend this algorithm by a greedy joining heuristic and show empirically that it improves the state of the art in solution quality and runtime on several benchmark datasets.

A cyclic proof system is a proof system whose proof figure is a tree with cycles. The cut-elimination in a proof system is fundamental. It is conjectured that the cut-elimination in the cyclic proof system for first-order logic with inductive definitions does not hold. This paper shows that the conjecture is correct by giving a sequent not provable without the cut rule but provable in the cyclic proof system.

Mesh-based Graph Neural Networks (GNNs) have recently shown capabilities to simulate complex multiphysics problems with accelerated performance times. However, mesh-based GNNs require a large number of message-passing (MP) steps and suffer from over-smoothing for problems involving very fine mesh. In this work, we develop a multiscale mesh-based GNN framework mimicking a conventional iterative multigrid solver, coupled with adaptive mesh refinement (AMR), to mitigate challenges with conventional mesh-based GNNs. We use the framework to accelerate phase field (PF) fracture problems involving coupled partial differential equations with a near-singular operator due to near-zero modulus inside the crack. We define the initial graph representation using all mesh resolution levels. We perform a series of downsampling steps using Transformer MP GNNs to reach the coarsest graph followed by upsampling steps to reach the original graph. We use skip connectors from the generated embedding during coarsening to prevent over-smoothing. We use Transfer Learning (TL) to significantly reduce the size of training datasets needed to simulate different crack configurations and loading conditions. The trained framework showed accelerated simulation times, while maintaining high accuracy for all cases compared to physics-based PF fracture model. Finally, this work provides a new approach to accelerate a variety of mesh-based engineering multiphysics problems

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司