亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Composite quantile regression has been used to obtain robust estimators of regression coefficients in linear models with good statistical efficiency. By revealing an intrinsic link between the composite quantile regression loss function and the Wasserstein distance from the residuals to the set of quantiles, we establish a generalization of the composite quantile regression to the multiple-output settings. Theoretical convergence rates of the proposed estimator are derived both under the setting where the additive error possesses only a finite $\ell$-th moment (for $\ell > 2$) and where it exhibits a sub-Weibull tail. In doing so, we develop novel techniques for analyzing the M-estimation problem that involves Wasserstein-distance in the loss. Numerical studies confirm the practical effectiveness of our proposed procedure.

相關內容

In general insurance, claims are often lower-truncated and right-censored because insurance contracts may involve deductibles and maximal covers. Most classical statistical models are not (directly) suited to model lower-truncated and right-censored claims. A surprisingly flexible family of distributions that can cope with lower-truncated and right-censored claims is the class of MBBEFD distributions that originally has been introduced by Bernegger (1997) for reinsurance pricing, but which has not gained much attention outside the reinsurance literature. Interestingly, in general insurance, we mainly rely on unimodal skewed densities, whereas the reinsurance literature typically proposes monotonically decreasing densities within the MBBEFD class. We show that this class contains both types of densities, and we extend it to a bigger family of distribution functions suitable for modeling lower-truncated and right-censored claims. In addition, we discuss how changes in the deductible or the maximal cover affect the chosen distributions.

Due to their flexibility to represent almost any kind of relational data, graph-based models have enjoyed a tremendous success over the past decades. While graphs are inherently only combinatorial objects, however, many prominent analysis tools are based on the algebraic representation of graphs via matrices such as the graph Laplacian, or on associated graph embeddings. Such embeddings associate to each node a set of coordinates in a vector space, a representation which can then be employed for learning tasks such as the classification or alignment of the nodes of the graph. As the geometric picture provided by embedding methods enables the use of a multitude of methods developed for vector space data, embeddings have thus gained interest both from a theoretical as well as a practical perspective. Inspired by trace-optimization problems, often encountered in the analysis of graph-based data, here we present a method to derive ellipsoidal embeddings of the nodes of a graph, in which each node is assigned a set of coordinates on the surface of a hyperellipsoid. Our method may be seen as an alternative to popular spectral embedding techniques, to which it shares certain similarities we discuss. To illustrate the utility of the embedding we conduct a case study in which we analyse synthetic and real world networks with modular structure, and compare the results obtained with known methods in the literature.

Many complex tasks can be decomposed into simpler, independent parts. Discovering such underlying compositional structure has the potential to enable compositional generalization. Despite progress, our most powerful systems struggle to compose flexibly. It therefore seems natural to make models more modular to help capture the compositional nature of many tasks. However, it is unclear under which circumstances modular systems can discover hidden compositional structure. To shed light on this question, we study a teacher-student setting with a modular teacher where we have full control over the composition of ground truth modules. This allows us to relate the problem of compositional generalization to that of identification of the underlying modules. In particular we study modularity in hypernetworks representing a general class of multiplicative interactions. We show theoretically that identification up to linear transformation purely from demonstrations is possible without having to learn an exponential number of module combinations. We further demonstrate empirically that under the theoretically identified conditions, meta-learning from finite data can discover modular policies that generalize compositionally in a number of complex environments.

Many classical inferential approaches fail to hold when interference exists among the population units. This amounts to the treatment status of one unit affecting the potential outcome of other units in the population. Testing for such spillover effects in this setting makes the null hypothesis non-sharp. An interesting approach to tackling the non-sharp nature of the null hypothesis in this setup is constructing conditional randomization tests such that the null is sharp on the restricted population. In randomized experiments, conditional randomized tests hold finite sample validity. Such approaches can pose computational challenges as finding these appropriate sub-populations based on experimental design can involve solving an NP-hard problem. In this paper, we view the network amongst the population as a random variable instead of being fixed. We propose a new approach that builds a conditional quasi-randomization test. Our main idea is to build the (non-sharp) null distribution of no spillover effects using random graph null models. We show that our method is exactly valid in finite-samples under mild assumptions. Our method displays enhanced power over other methods, with substantial improvement in complex experimental designs. We highlight that the method reduces to a simple permutation test, making it easy to implement in practice. We conduct a simulation study to verify the finite-sample validity of our approach and illustrate our methodology to test for interference in a weather insurance adoption experiment run in rural China.

We consider a discrete best approximation problem formulated in the framework of tropical algebra, which deals with the theory and applications of algebraic systems with idempotent operations. Given a set of samples of input and output of an unknown function, the problem is to construct a generalized tropical Puiseux polynomial that best approximates the function in the sense of a tropical distance function. The construction of an approximate polynomial involves the evaluation of both unknown coefficient and exponent of each monomial in the polynomial. To solve the approximation problem, we first reduce the problem to an equation in unknown vector of coefficients, which is given by a matrix with entries parameterized by unknown exponents. We derive a best approximate solution of the equation, which yields both vector of coefficients and approximation error parameterized by the exponents. Optimal values of exponents are found by minimization of the approximation error, which is reduced to a minimization of a function of exponents over all partitions of a finite set. We solve this minimization problem in terms of max-plus algebra (where addition is defined as maximum and multiplication as arithmetic addition) by using a computational procedure based on the agglomerative clustering technique. This solution is extended to the minimization problem of finding optimal exponents in the polynomial in terms of max-algebra (where addition is defined as maximum). The results obtained are applied to develop new solutions for conventional problems of discrete best approximation of real functions by piecewise linear functions and piecewise Puiseux polynomials. We discuss computational complexity of the proposed solution and estimate upper bounds on the computational time. We demonstrate examples of approximation problems solved in terms of max-plus and max-algebra, and give graphical illustrations.

We address the problem of the best uniform approximation of a continuous function on a convex domain. The approximation is by linear combinations of a finite system of functions (not necessarily Chebyshev) under arbitrary linear constraints. By modifying the concept of alternance and of the Remez iterative procedure we present a method, which demonstrates its efficiency in numerical problems. The linear rate of convergence is proved under some favourable assumptions. A special attention is paid to systems of complex exponents, Gaussian functions, lacunar algebraic and trigonometric polynomials. Applications to signal processing, linear ODE, switching dynamical systems, and to Markov-Bernstein type inequalities are considered.

The importance of considering contextual probabilities in shaping response patterns within psychological testing is underscored, despite the ubiquitous nature of order effects discussed extensively in methodological literature. Drawing from concepts such as path-dependency, first-order autocorrelation, state-dependency, and hysteresis, the present study is an attempt to address how earlier responses serve as an anchor for subsequent answers in tests, surveys, and questionnaires. Introducing the notion of non-commuting observables derived from quantum physics, I highlight their role in characterizing psychological processes and the impact of measurement instruments on participants' responses. We advocate for the utilization of first-order Markov chain modeling to capture and forecast sequential dependencies in survey and test responses. The employment of the first-order Markov chain model lies in individuals' propensity to exhibit partial focus to preceding responses, with recent items most likely exerting a substantial influence on subsequent response selection. This study contributes to advancing our understanding of the dynamics inherent in sequential data within psychological research and provides a methodological framework for conducting longitudinal analyses of response patterns of test and questionnaire.

We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Crucially, we also consider 'degree--corrected' models that correctly reflect the degree distribution of the network and consequently prove to be a better fit for many real world--networks compared to non-degree corrected models. We test the presented approach on simulated data for which we recover the set of underlying higher order interactions to a high degree of accuracy. For empirical networks the method identifies concise sets of atomic subgraphs from within thousands of candidates that cover a large fraction of edges and include higher order interactions of known structural and functional significance. The method not only produces an explicit higher order representation of the network but also a fit of the network to analytically tractable models opening new avenues for the systematic study of higher order network structures.

For multivariate data, tandem clustering is a well-known technique aiming to improve cluster identification through initial dimension reduction. Nevertheless, the usual approach using principal component analysis (PCA) has been criticized for focusing solely on inertia so that the first components do not necessarily retain the structure of interest for clustering. To address this limitation, a new tandem clustering approach based on invariant coordinate selection (ICS) is proposed. By jointly diagonalizing two scatter matrices, ICS is designed to find structure in the data while providing affine invariant components. Certain theoretical results have been previously derived and guarantee that under some elliptical mixture models, the group structure can be highlighted on a subset of the first and/or last components. However, ICS has garnered minimal attention within the context of clustering. Two challenges associated with ICS include choosing the pair of scatter matrices and selecting the components to retain. For effective clustering purposes, it is demonstrated that the best scatter pairs consist of one scatter matrix capturing the within-cluster structure and another capturing the global structure. For the former, local shape or pairwise scatters are of great interest, as is the minimum covariance determinant (MCD) estimator based on a carefully chosen subset size that is smaller than usual. The performance of ICS as a dimension reduction method is evaluated in terms of preserving the cluster structure in the data. In an extensive simulation study and empirical applications with benchmark data sets, various combinations of scatter matrices as well as component selection criteria are compared in situations with and without outliers. Overall, the new approach of tandem clustering with ICS shows promising results and clearly outperforms the PCA-based approach.

High-dimensional real-world systems can often be well characterized by a small number of simultaneous low-complexity interactions. The analysis of variance (ANOVA) decomposition and the anchored decomposition are typical techniques to find sparse additive decompositions of functions. In this paper, we are interested in a setting, where these decompositions are not directly spare, but become so after an appropriate basis transform. Noting that the sparsity of those additive function decompositions is equivalent to the fact that most of its mixed partial derivatives vanish, we can exploit a connection to the underlying function graphs to determine an orthogonal transform that realizes the appropriate basis change. This is done in three steps: we apply singular value decomposition to minimize the number of vertices of the function graph, and joint block diagonalization techniques of families of matrices followed by sparse minimization based on relaxations of the zero ''norm'' for minimizing the number of edges. For the latter one, we propose and analyze minimization techniques over the manifold of special orthogonal matrices. Various numerical examples illustrate the reliability of our approach for functions having, after a basis transform, a sparse additive decomposition into summands with at most two variables.

北京阿比特科技有限公司