Independent Component Analysis (ICA) aims to recover independent latent variables from observed mixtures thereof. Causal Representation Learning (CRL) aims instead to infer causally related (thus often statistically dependent) latent variables, together with the unknown graph encoding their causal relationships. We introduce an intermediate problem termed Causal Component Analysis (CauCA). CauCA can be viewed as a generalization of ICA, modelling the causal dependence among the latent components, and as a special case of CRL. In contrast to CRL, it presupposes knowledge of the causal graph, focusing solely on learning the unmixing function and the causal mechanisms. Any impossibility results regarding the recovery of the ground truth in CauCA also apply for CRL, while possibility results may serve as a stepping stone for extensions to CRL. We characterize CauCA identifiability from multiple datasets generated through different types of interventions on the latent causal variables. As a corollary, this interventional perspective also leads to new identifiability results for nonlinear ICA -- a special case of CauCA with an empty graph -- requiring strictly fewer datasets than previous results. We introduce a likelihood-based approach using normalizing flows to estimate both the unmixing function and the causal mechanisms, and demonstrate its effectiveness through extensive synthetic experiments in the CauCA and ICA setting.
The starting point for much of multivariate analysis (MVA) is an $n\times p$ data matrix whose $n$ rows represent observations and whose $p$ columns represent variables. Some multivariate data sets, however, may be best conceptualized not as $n$ discrete $p$-variate observations, but as $p$ curves or functions defined on a common time interval. We introduce a framework for extending techniques of multivariate analysis to such settings. The proposed framework rests on the assumption that the curves can be represented as linear combinations of basis functions such as B-splines. This is formally identical to the Ramsay-Silverman representation of functional data; but whereas functional data analysis extends MVA to the case of observations that are curves rather than vectors -- heuristically, $n\times p$ data with $p$ infinite -- we are instead concerned with what happens when $n$ is infinite. We describe how to translate the classical MVA methods of covariance and correlation estimation, principal component analysis, Fisher's linear discriminant analysis, and $k$-means clustering to the continuous-time setting. We illustrate the methods with a novel perspective on a well-known Canadian weather data set, and with applications to neurobiological and environmetric data. The methods are implemented in the publicly available R package \texttt{ctmva}.
This article explains the usage of R package CausalModels, which is publicly available on the Comprehensive R Archive Network. While packages are available for sufficiently estimating causal effects, there lacks a package that provides a collection of structural models using the conventional statistical approach developed by Hernan and Robins (2020). CausalModels addresses this deficiency of software in R concerning causal inference by offering tools for methods that account for biases in observational data without requiring extensive statistical knowledge. These methods should not be ignored and may be more appropriate or efficient in solving particular problems. While implementations of these statistical models are distributed among a number of causal packages, CausalModels introduces a simple and accessible framework for a consistent modeling pipeline among a variety of statistical methods for estimating causal effects in a single R package. It consists of common methods including standardization, IP weighting, G-estimation, outcome regression, instrumental variables and propensity matching.
Business statistics play a crucial role in implementing a data-driven strategic plan at the enterprise level to employ various analytics where the outcomes of such a plan enable an enterprise to enhance the decision-making process or to mitigate risks to the organization. In this work, a strategic plan informed by the statistical analysis is introduced for a financial company called LendingClub, where the plan is comprised of exploring the possibility of onboarding a big data platform along with advanced feature selection capacities. The main objectives of such a plan are to increase the company's revenue while reducing the risks of granting loans to borrowers who cannot return their loans. In this study, different hypotheses formulated to address the company's concerns are studied, where the results reveal that the amount of loans profoundly impacts the number of borrowers charging off their loans. Also, the proposed strategic plan includes onboarding advanced analytics such as machine learning technologies that allow the company to build better generalized data-driven predictive models.
Heretofore, learning the directed acyclic graphs (DAGs) that encode the cause-effect relationships embedded in observational data is a computationally challenging problem. A recent trend of studies has shown that it is possible to recover the DAGs with polynomial time complexity under the equal variances assumption. However, this prohibits the heteroscedasticity of the noise, which allows for more flexible modeling capabilities, but at the same time is substantially more challenging to handle. In this study, we tackle the heteroscedastic causal structure learning problem under Gaussian noises. By exploiting the normality of the causal mechanisms, we can recover a valid causal ordering, which can uniquely identify the causal DAG using a series of conditional independence tests. The result is HOST (Heteroscedastic causal STructure learning), a simple yet effective causal structure learning algorithm that scales polynomially in both sample size and dimensionality. In addition, via extensive empirical evaluations on a wide range of both controlled and real datasets, we show that the proposed HOST method is competitive with state-of-the-art approaches in both the causal order learning and structure learning problems.
Difference-in-differences is without a doubt the most widely used method for evaluating the causal effect of a hypothetical intervention in the possible presence of confounding bias due to hidden factors. The approach is typically used when both pre- and post-exposure outcome measurements are available, and one can reasonably assume that the additive association of the unobserved confounder with the outcome is equal in the two exposure arms, and constant over time; a so-called parallel trends assumption. The parallel trends assumption may not be credible in many practical settings, including if the outcome is binary, a count, or polytomous, and more generally, when the unmeasured confounder exhibits non-additive effects on the distribution of the outcome, even if such effects are constant over time. We introduce an alternative approach that replaces the parallel trends assumption with an odds ratio equi-confounding assumption, which states that confounding bias for the causal effect of interest, encoded by an association between treatment and the potential outcome under no-treatment can be identified with a well-specified generalized linear model relating the pre-exposure outcome and the exposure. As the proposed method identifies any causal effect that is conceivably identified in the absence of confounding bias, including nonlinear effects such as quantile treatment effects, the approach is aptly called Universal Difference-in-differences (UDiD). Both fully parametric and more robust semiparametric UDiD estimators are described and illustrated in a real-world application concerning the causal effects of a Zika virus outbreak on birth rate in Brazil.
Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.
Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.