亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Rare categories abound in a number of real-world networks and play a pivotal role in a variety of high-stakes applications, including financial fraud detection, network intrusion detection, and rare disease diagnosis. Rare category analysis (RCA) refers to the task of detecting, characterizing, and comprehending the behaviors of minority classes in a highly-imbalanced data distribution. While the vast majority of existing work on RCA has focused on improving the prediction performance, a few fundamental research questions heretofore have received little attention and are less explored: How confident or uncertain is a prediction model in rare category analysis? How can we quantify the uncertainty in the learning process and enable reliable rare category analysis? To answer these questions, we start by investigating miscalibration in existing RCA methods. Empirical results reveal that state-of-the-art RCA methods are mainly over-confident in predicting minority classes and under-confident in predicting majority classes. Motivated by the observation, we propose a novel individual calibration framework, named CALIRARE, for alleviating the unique challenges of RCA, thus enabling reliable rare category analysis. In particular, to quantify the uncertainties in RCA, we develop a node-level uncertainty quantification algorithm to model the overlapping support regions with high uncertainty; to handle the rarity of minority classes in miscalibration calculation, we generalize the distribution-based calibration metric to the instance level and propose the first individual calibration measurement on graphs named Expected Individual Calibration Error (EICE). We perform extensive experimental evaluations on real-world datasets, including rare category characterization and model calibration tasks, which demonstrate the significance of our proposed framework.

相關內容

This paper focuses on the design of transmission methods and reflection optimization for a wireless system assisted by a single or multiple reconfigurable intelligent surfaces (RISs). The existing techniques are either too complex to implement in practical systems or too inefficient to achieve high performance. To overcome the shortcomings of the existing schemes, we propose a simple but efficient approach based on \textit{opportunistic reflection} and \textit{non-orthogonal transmission}. The key idea is opportunistically selecting the best user that can reap the maximal gain from the optimally reflected signals via RIS. That is to say, only the channel state information of the best user is used for RIS reflection optimization, which can in turn lower complexity substantially. In addition, the second user is selected to superpose its signal on that of the primary user, where the benefits of non-orthogonal transmission, i.e., high system capacity and improved user fairness, are obtained. Additionally, a simplified variant exploiting random phase shifts is proposed to avoid the high overhead of RIS channel estimation.

Face verification (FV) using deep neural network models has made tremendous progress in recent years, surpassing human accuracy and seeing deployment in various applications such as border control and smartphone unlocking. However, FV systems are vulnerable to Adversarial Attacks, which manipulate input images to deceive these systems in ways usually unnoticeable to humans. This paper provides an in-depth study of attacks on FV systems. We introduce the DodgePersonation Attack that formulates the creation of face images that impersonate a set of given identities while avoiding being identified as any of the identities in a separate, disjoint set. A taxonomy is proposed to provide a unified view of different types of Adversarial Attacks against FV systems, including Dodging Attacks, Impersonation Attacks, and Master Face Attacks. Finally, we propose the ''One Face to Rule Them All'' Attack which implements the DodgePersonation Attack with state-of-the-art performance on a well-known scenario (Master Face Attack) and which can also be used for the new scenarios introduced in this paper. While the state-of-the-art Master Face Attack can produce a set of 9 images to cover 43.82% of the identities in their test database, with 9 images our attack can cover 57.27% to 58.5% of these identifies while giving the attacker the choice of the identity to use to create the impersonation. Moreover, the 9 generated attack images appear identical to a casual observer.

Multivariate time series (MTS) data collected from multiple sensors provide the potential for accurate abnormal activity detection in smart healthcare scenarios. However, anomalies exhibit diverse patterns and become unnoticeable in MTS data. Consequently, achieving accurate anomaly detection is challenging since we have to capture both temporal dependencies of time series and inter-relationships among variables. To address this problem, we propose a Residual-based Anomaly Detection approach, Rs-AD, for effective representation learning and abnormal activity detection. We evaluate our scheme on a real-world gait dataset and the experimental results demonstrate an F1 score of 0.839.

In the cooperative cellular network, relay-like base stations are connected to the central processor (CP) via rate-limited fronthaul links and the joint processing is performed at the CP, which thus can effectively mitigate the multiuser interference. In this paper, we consider the joint beamforming and compression problem with per-antenna power constraints in the cooperative cellular network. We first establish the equivalence between the considered problem and its semidefinite relaxation (SDR). Then we further derive the partial Lagrangian dual of the SDR problem and show that the objective function of the obtained dual problem is differentiable. Based on the differentiability, we propose two efficient projected gradient ascent algorithms for solving the dual problem, which are projected exact gradient ascent (PEGA) and projected inexact gradient ascent (PIGA). While PEGA is guaranteed to find the global solution of the dual problem (and hence the global solution of the original problem), PIGA is more computationally efficient due to the lower complexity in inexactly computing the gradient. Global optimality and high efficiency of the proposed algorithms are demonstrated via numerical experiments.

This paper investigates double RIS-assisted MIMO communication systems over Rician fading channels with finite scatterers, spatial correlation, and the existence of a double-scattering link between the transceiver. First, the statistical information is driven in closed form for the aggregated channels, unveiling various influences of the system and environment on the average channel power gains. Next, we study two active and passive beamforming designs corresponding to two objectives. The first problem maximizes channel capacity by jointly optimizing the active precoding and combining matrices at the transceivers and passive beamforming at the double RISs subject to the transmitting power constraint. In order to tackle the inherently non-convex issue, we propose an efficient alternating optimization algorithm (AO) based on the alternating direction method of multipliers (ADMM). The second problem enhances communication reliability by jointly training the encoder and decoder at the transceivers and the phase shifters at the RISs. Each neural network representing a system entity in an end-to-end learning framework is proposed to minimize the symbol error rate of the detected symbols by controlling the transceiver and the RISs phase shifts. Numerical results verify our analysis and demonstrate the superior improvements of phase shift designs to boost system performance.

This work proposes a robust Partial Domain Adaptation (PDA) framework that mitigates the negative transfer problem by incorporating a robust target-supervision strategy. It leverages ensemble learning and includes diverse, complementary label feedback, alleviating the effect of incorrect feedback and promoting pseudo-label refinement. Rather than relying exclusively on first-order moments for distribution alignment, our approach offers explicit objectives to optimize intra-class compactness and inter-class separation with the inferred source prototypes and highly-confident target samples in a domain-invariant fashion. Notably, we ensure source data privacy by eliminating the need to access the source data during the adaptation phase through a priori inference of source prototypes. We conducted a series of comprehensive experiments, including an ablation analysis, covering a range of partial domain adaptation tasks. Comprehensive evaluations on benchmark datasets corroborate our framework's enhanced robustness and generalization, demonstrating its superiority over existing state-of-the-art PDA approaches.

Latent factor models are the dominant backbones of contemporary recommender systems (RSs) given their performance advantages, where a unique vector embedding with a fixed dimensionality (e.g., 128) is required to represent each entity (commonly a user/item). Due to the large number of users and items on e-commerce sites, the embedding table is arguably the least memory-efficient component of RSs. For any lightweight recommender that aims to efficiently scale with the growing size of users/items or to remain applicable in resource-constrained settings, existing solutions either reduce the number of embeddings needed via hashing, or sparsify the full embedding table to switch off selected embedding dimensions. However, as hash collision arises or embeddings become overly sparse, especially when adapting to a tighter memory budget, those lightweight recommenders inevitably have to compromise their accuracy. To this end, we propose a novel compact embedding framework for RSs, namely Compositional Embedding with Regularized Pruning (CERP). Specifically, CERP represents each entity by combining a pair of embeddings from two independent, substantially smaller meta-embedding tables, which are then jointly pruned via a learnable element-wise threshold. In addition, we innovatively design a regularized pruning mechanism in CERP, such that the two sparsified meta-embedding tables are encouraged to encode information that is mutually complementary. Given the compatibility with agnostic latent factor models, we pair CERP with two popular recommendation models for extensive experiments, where results on two real-world datasets under different memory budgets demonstrate its superiority against state-of-the-art baselines. The codebase of CERP is available in //github.com/xurong-liang/CERP.

Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.

Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.

This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.

北京阿比特科技有限公司