亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite recent advances in Natural Language Processing (NLP), hierarchical discourse parsing in the framework of Rhetorical Structure Theory remains challenging, and our understanding of the reasons for this are as yet limited. In this paper, we examine and model some of the factors associated with parsing difficulties in previous work: the existence of implicit discourse relations, challenges in identifying long-distance relations, out-of-vocabulary items, and more. In order to assess the relative importance of these variables, we also release two annotated English test-sets with explicit correct and distracting discourse markers associated with gold standard RST relations. Our results show that as in shallow discourse parsing, the explicit/implicit distinction plays a role, but that long-distance dependencies are the main challenge, while lack of lexical overlap is less of a problem, at least for in-domain parsing. Our final model is able to predict where errors will occur with an accuracy of 76.3% for the bottom-up parser and 76.6% for the top-down parser.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 可理解性 · 張成子空間 · 語言模型化 ·
2023 年 10 月 26 日

Document understanding tasks, in particular, Visually-rich Document Entity Retrieval (VDER), have gained significant attention in recent years thanks to their broad applications in enterprise AI. However, publicly available data have been scarce for these tasks due to strict privacy constraints and high annotation costs. To make things worse, the non-overlapping entity spaces from different datasets hinder the knowledge transfer between document types. In this paper, we propose a method to collect massive-scale and weakly labeled data from the web to benefit the training of VDER models. The collected dataset, named DocumentNet, does not depend on specific document types or entity sets, making it universally applicable to all VDER tasks. The current DocumentNet consists of 30M documents spanning nearly 400 document types organized in a four-level ontology. Experiments on a set of broadly adopted VDER tasks show significant improvements when DocumentNet is incorporated into the pre-training for both classic and few-shot learning settings. With the recent emergence of large language models (LLMs), DocumentNet provides a large data source to extend their multi-modal capabilities for VDER.

Partially Observable Markov Decision Processes (POMDPs) are used to model environments where the full state cannot be perceived by an agent. As such the agent needs to reason taking into account the past observations and actions. However, simply remembering the full history is generally intractable due to the exponential growth in the history space. Maintaining a probability distribution that models the belief over what the true state is can be used as a sufficient statistic of the history, but its computation requires access to the model of the environment and is often intractable. While SOTA algorithms use Recurrent Neural Networks to compress the observation-action history aiming to learn a sufficient statistic, they lack guarantees of success and can lead to sub-optimal policies. To overcome this, we propose the Wasserstein Belief Updater, an RL algorithm that learns a latent model of the POMDP and an approximation of the belief update. Our approach comes with theoretical guarantees on the quality of our approximation ensuring that our outputted beliefs allow for learning the optimal value function.

Virtual Reality (VR) can support effective and scalable training of psychomotor skills in manufacturing. However, many industry training modules offer experiences that are close-ended and do not allow for human error. We aim to address this gap in VR training tools for psychomotor skills training by exploring an open-ended approach to the system design. We designed a VR training simulation prototype to perform open-ended practice of drilling using a 3-axis milling machine. The simulation employs near "end-to-end" instruction through a safety module, a setup and drilling tutorial, open-ended practice complete with warnings of mistakes and failures, and a function to assess the geometries and locations of drilled holes against an engineering drawing. We developed and conducted a user study within an undergraduate-level introductory fabrication course to investigate the impact of open-ended VR practice on learning outcomes. Study results reveal positive trends, with the VR group successfully completing the machining task of drilling at a higher rate (75% vs 64%), with fewer mistakes (1.75 vs 2.14 score), and in less time (17.67 mins vs 21.57 mins) compared to the control group. We discuss our findings and limitations and implications for the design of open-ended VR training systems for learning psychomotor skills.

Recent curriculum Reinforcement Learning (RL) has shown notable progress in solving complex tasks by proposing sequences of surrogate tasks. However, the previous approaches often face challenges when they generate curriculum goals in a high-dimensional space. Thus, they usually rely on manually specified goal spaces. To alleviate this limitation and improve the scalability of the curriculum, we propose a novel curriculum method that automatically defines the semantic goal space which contains vital information for the curriculum process, and suggests curriculum goals over it. To define the semantic goal space, our method discretizes continuous observations via vector quantized-variational autoencoders (VQ-VAE) and restores the temporal relations between the discretized observations by a graph. Concurrently, ours suggests uncertainty and temporal distance-aware curriculum goals that converges to the final goals over the automatically composed goal space. We demonstrate that the proposed method allows efficient explorations in an uninformed environment with raw goal examples only. Also, ours outperforms the state-of-the-art curriculum RL methods on data efficiency and performance, in various goal-reaching tasks even with ego-centric visual inputs.

Trusted execution environments in several existing and upcoming CPUs demonstrate the success of confidential computing, with the caveat that tenants cannot securely use accelerators such as GPUs and FPGAs. In this paper, we reconsider the Arm Confidential Computing Architecture (CCA) design, an upcoming TEE feature in Armv9-A, to address this gap. We observe that CCA offers the right abstraction and mechanisms to allow confidential VMs to use accelerators as a first-class abstraction. We build ACAI, a CCA-based solution, with a principled approach of extending CCA security invariants to device-side access to address several critical security gaps. Our experimental results on GPU and FPGA demonstrate the feasibility of ACAI while maintaining security guarantees.

Language Identification (LID) is a crucial preliminary process in the field of Automatic Speech Recognition (ASR) that involves the identification of a spoken language from audio samples. Contemporary systems that can process speech in multiple languages require users to expressly designate one or more languages prior to utilization. The LID task assumes a significant role in scenarios where ASR systems are unable to comprehend the spoken language in multilingual settings, leading to unsuccessful speech recognition outcomes. The present study introduces convolutional recurrent neural network (CRNN) based LID, designed to operate on the Mel-frequency Cepstral Coefficient (MFCC) characteristics of audio samples. Furthermore, we replicate certain state-of-the-art methodologies, specifically the Convolutional Neural Network (CNN) and Attention-based Convolutional Recurrent Neural Network (CRNN with attention), and conduct a comparative analysis with our CRNN-based approach. We conducted comprehensive evaluations on thirteen distinct Indian languages and our model resulted in over 98\% classification accuracy. The LID model exhibits high-performance levels ranging from 97% to 100% for languages that are linguistically similar. The proposed LID model exhibits a high degree of extensibility to additional languages and demonstrates a strong resistance to noise, achieving 91.2% accuracy in a noisy setting when applied to a European Language (EU) dataset.

We present MsATL: the first tool for deciding the satisfiability of Alternating-time Temporal Logic (ATL) with imperfect information. MsATL combines SAT Modulo Monotonic Theories solvers with existing ATL model checkers: MCMAS and STV. The tool can deal with various semantics of ATL, including perfect and imperfect information, and can handle additional practical requirements. MsATL can be applied for synthesis of games that conform to a given specification, with the synthesised game often being minimal.

We present ACL OCL, a scholarly corpus derived from the ACL Anthology to assist Open scientific research in the Computational Linguistics domain. Integrating and enhancing the previous versions of the ACL Anthology, the ACL OCL contributes metadata, PDF files, citation graphs and additional structured full texts with sections, figures, and links to a large knowledge resource (Semantic Scholar). The ACL OCL spans seven decades, containing 73K papers, alongside 210K figures. We spotlight how ACL OCL applies to observe trends in computational linguistics. By detecting paper topics with a supervised neural model, we note that interest in "Syntax: Tagging, Chunking and Parsing" is waning and "Natural Language Generation" is resurging. Our dataset is available from HuggingFace (//huggingface.co/datasets/WINGNUS/ACL-OCL).

This work presents an algorithm for tracking the shape of multiple entangling Deformable Linear Objects (DLOs) from a sequence of RGB-D images. This algorithm runs in real-time and improves on previous single-DLO tracking approaches by enabling tracking of multiple objects. This is achieved using Global-Local Topology Preservation (GLTP). This work uses the geodesic distance in GLTP to define the distance between separate objects and the distance between different parts of the same object. Tracking multiple entangling DLOs is demonstrated experimentally. The source code is publicly released.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

北京阿比特科技有限公司