Measuring the quality of responses generated by LLMs is a challenging task, particularly when it comes to evaluating whether the response is aligned with human preference. A novel approach involves using the LLM itself to make evaluation and stabilizing the results through multiple independent evaluations, similar to a single-layer narrow LLM network. This network consists of a fixed number of neurons, with each neuron being the same LLM. In this paper, we draw upon the extensive research on deep neural networks to explore whether deeper and wider networks can lead to fairer evaluations. Specifically, inspired by the observation that different neurons in a neural network are responsible for detecting different concepts, we first adaptively generate as many neuron roles as possible for each evaluation sample. Each perspective corresponds to the role of a specific LLM neuron in the first layer. In subsequent layers, we follow the idea that higher layers in deep networks are responsible for more comprehensive features, each layer receives representations from all neurons in the previous layer, integrating the locally learned evaluation information to obtain a more comprehensive evaluation result. Interestingly, this network design resembles the process of academic paper reviewing. To validate the effectiveness of our method, we construct the largest and most diverse English evaluation benchmark LLMEval$^2$ for LLM evaluators, comprising 15 tasks, 8 abilities, and 2,553 samples. Experimental results demonstrate that a wider network (involving many reviewers) with 2 layers (one round of discussion) performs the best, improving kappa correlation coefficient from 0.28 to 0.34. We also leverage WideDeep to aid in the assessment of Chinese LLMs, which has accelerated the evaluation time by 4.6 times, resulting in a 60% cost saving. WideDeep achieves a remarkable 93% agreement level among humans.
Stochastic volatility models, where the volatility is a stochastic process, can capture most of the essential stylized facts of implied volatility surfaces and give more realistic dynamics of the volatility smile/skew. However, they come with the significant issue that they take too long to calibrate. Alternative calibration methods based on Deep Learning (DL) techniques have been recently used to build fast and accurate solutions to the calibration problem. Huge and Savine developed a Differential Machine Learning (DML) approach, where Machine Learning models are trained on samples of not only features and labels but also differentials of labels to features. The present work aims to apply the DML technique to price vanilla European options (i.e. the calibration instruments), more specifically, puts when the underlying asset follows a Heston model and then calibrate the model on the trained network. DML allows for fast training and accurate pricing. The trained neural network dramatically reduces Heston calibration's computation time. In this work, we also introduce different regularisation techniques, and we apply them notably in the case of the DML. We compare their performance in reducing overfitting and improving the generalisation error. The DML performance is also compared to the classical DL (without differentiation) one in the case of Feed-Forward Neural Networks. We show that the DML outperforms the DL. The complete code for our experiments is provided in the GitHub repository: //github.com/asridi/DML-Calibration-Heston-Model
The performance of Hamiltonian Monte Carlo crucially depends on its parameters, in particular the integration timestep and the number of integration steps. We present an adaptive general-purpose framework to automatically tune these parameters based on a loss function which promotes the fast exploration of phase-space. For this, we make use of a fully-differentiable set-up and use backpropagation for optimization. An attention-like loss is defined which allows for the gradient driven learning of the distribution of integration steps. We also highlight the importance of jittering for a smooth loss-surface. Our approach is demonstrated for the one-dimensional harmonic oscillator and alanine dipeptide, a small protein common as a test-case for simulation methods. We find a good correspondence between our loss and the autocorrelation times, resulting in well-tuned parameters for Hamiltonian Monte Carlo.
Ordered sequences of data, specified with a join operation to combine sequences, serve as a foundation for the implementation of parallel functional algorithms. This abstract data type can be elegantly and efficiently implemented using balanced binary trees, where a join operation is provided to combine two trees and rebalance as necessary. In this work, we present a verified implementation and cost analysis of joinable red-black trees in $\textbf{calf}$, a dependent type theory for cost analysis. We implement red-black trees and auxiliary intermediate data structures in such a way that all correctness invariants are intrinsically maintained. Then, we describe and verify precise cost bounds on the operations, making use of the red-black tree invariants. Finally, we implement standard algorithms on sequences using the simple join-based signature and bound their cost in the case that red-black trees are used as the underlying implementation. All proofs are formally mechanized using the embedding of $\textbf{calf}$ in the Agda theorem prover.
Human knowledge is subject to uncertainties, imprecision, incompleteness and inconsistencies. Moreover, the meaning of many everyday terms is dependent on the context. That poses a huge challenge for the Semantic Web. This paper introduces work on an intuitive notation and model for defeasible reasoning with imperfect knowledge, and relates it to previous work on argumentation theory. PKN is to N3 as defeasible reasoning is to deductive logic. Further work is needed on an intuitive syntax for describing reasoning strategies and tactics in declarative terms, drawing upon the AIF ontology for inspiration. The paper closes with observations on symbolic approaches in the era of large language models.
The Geometric Brownian Motion (GBM) is a standard model in quantitative finance, but the potential function of its stochastic differential equation (SDE) cannot include stable nonzero prices. This article generalises the GBM to an SDE with polynomial drift of order q and shows via model selection that q=2 is most frequently the optimal model to describe the data. Moreover, Markov chain Monte Carlo ensembles of the accompanying potential functions show a clear and pronounced potential well, indicating the existence of a stable price.
Connectionist temporal classification (CTC) is commonly adopted for sequence modeling tasks like speech recognition, where it is necessary to preserve order between the input and target sequences. However, CTC is only applied to deterministic sequence models, where the latent space is discontinuous and sparse, which in turn makes them less capable of handling data variability when compared to variational models. In this paper, we integrate CTC with a variational model and derive loss functions that can be used to train more generalizable sequence models that preserve order. Specifically, we derive two versions of the novel variational CTC based on two reasonable assumptions, the first being that the variational latent variables at each time step are conditionally independent; and the second being that these latent variables are Markovian. We show that both loss functions allow direct optimization of the variational lower bound for the model log-likelihood, and present computationally tractable forms for implementing them.
While large language models (LLMs) have demonstrated impressive performance in question-answering tasks, their performance is limited when the questions require knowledge that is not included in the model's training data and can only be acquired through direct observation or interaction with the real world. Existing methods decompose reasoning tasks through the use of modules invoked sequentially, limiting their ability to answer deep reasoning tasks. We introduce a method, Recursion based extensible LLM (REBEL), which handles open-world, deep reasoning tasks by employing automated reasoning techniques like dynamic planning and forward-chaining strategies. REBEL allows LLMs to reason via recursive problem decomposition and utilization of external tools. The tools that REBEL uses are specified only by natural language description. We further demonstrate REBEL capabilities on a set of problems that require a deeply nested use of external tools in a compositional and conversational setting.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.