For extensive coverage areas, multi-beam high throughput satellite (MB-HTS) communication is a promising technology that plays a crucial role in delivering broadband services to many users with diverse Quality of Service (QoS) requirements. This paper focuses on MB-HTS systems where all beams reuse the same spectrum. In particular, we propose a novel user scheduling and power allocation design capable of providing guarantees in terms of the individual QoS requirements while maximizing the system throughput under a limited power budget. Precoding is employed in the forward link to mitigate mutual interference at the users in multiple-access scenarios over different coherence time intervals. The combinatorial optimization structure from user scheduling requires an extremely high cost to obtain the global optimum even when a reduced number of users fit into a time slot. Therefore, we propose a heuristic algorithm yielding good trade-off between performance and computational complexity, applicable to a static operation framework of geostationary (GEO) satellite networks. Although the power allocation optimization is signomial programming, non-convex on a standard form, the solution can be lower bounded by the global optimum of a geometric program with a hidden convex structure. A local solution to the joint user scheduling and power allocation problem is consequently obtained by a successive optimization approach. Numerical results demonstrate the effectiveness of our algorithms on large-scale systems by providing better QoS satisfaction combined with outstanding overall system throughput.
We consider pessimistic bilevel stochastic programs in which the follower maximizes over a fixed compact convex set a strictly convex quadratic function, whose Hessian depends on the leader's decision. The resulting random variable is evaluated by a convex risk measure. Under assumptions including real analyticity of the lower-level goal function, we prove existence of optimal solutions. We discuss an alternate model where the leader hedges against optimal lower-level solutions, and show that in this case solvability can be guaranteed under weaker conditions both in a deterministic and in a stochastic setting. The approach is applied to a mechanical shape optimization problem in which the leader decides on an optimal material distribution to minimize a tracking-type cost functional, whereas the follower chooses forces from an admissible set to maximize a compliance objective. The material distribution is considered to be stochastically perturbed in the actual construction phase. Computational results illustrate the bilevel optimization concept and demonstrate the interplay of follower and leader in shape design and testing.
The Internet of Things (IoT) comprises of a heterogeneous mix of smart devices which vary widely in their size, usage, energy capacity, computational power etc. IoT devices are typically connected to the Cloud via Fog nodes for fast processing and response times. In a rush to deploy devices quickly into the real-world and to maximize market share, the issue of security is often considered as an afterthought by the manufacturers of such devices. Some well-known security concerns of IoT are - data confidentiality, authentication of devices, location privacy, device integrity etc. We believe that the majority of security schemes proposed to date are too heavyweight for them to be of any practical value for the IoT. In this paper we propose a lightweight encryption scheme loosely based on the classic one-time pad, and make use of hash functions for the generation and management of keys. Our scheme imposes minimal computational and storage requirements on the network nodes, which makes it a viable candidate for the encryption of data transmitted by IoT devices in the Fog.
Multi-robot systems offer enhanced capability over their monolithic counterparts, but they come at a cost of increased complexity in coordination. To reduce complexity and to make the problem tractable, multi-robot motion planning (MRMP) methods in the literature adopt de-coupled approaches that sacrifice either optimality or dynamic feasibility. In this paper, we present a convexification method, namely "parabolic relaxation", to generate optimal and dynamically feasible trajectories for MRMP in the coupled joint-space of all robots. We leverage upon the proposed relaxation to tackle the problem complexity and to attain computational tractability for planning over one hundred robots in extremely clustered environments. We take a multi-stage optimization approach that consists of i) mathematically formulating MRMP as a non-convex optimization, ii) lifting the problem into a higher dimensional space, iii) convexifying the problem through the proposed computationally efficient parabolic relaxation, and iv) penalizing with iterative search to ensure feasibility and recovery of feasible and near-optimal solutions to the original problem. Our numerical experiments demonstrate that the proposed approach is capable of generating optimal and dynamically feasible trajectories for challenging motion planning problems with higher success rate than the state-of-the-art, yet remain computationally tractable for over one hundred robots in a highly dense environment.
Downlink joint transmission by a cluster of remote radio heads (RRHs) is an essential technique for enhancing throughput in future cellular networks. This method requires global channel state information (CSI) at the processing unit that designs the joint precoder. To this end, a large amount of CSI must be shared between the RRHs and that unit. This paper proposes two contributions. The first is a new upper bound on the rate loss, which implies a lower bound on the achievable rate, obtained by a cluster of RRHs that employ joint zero-forcing (ZF) with incomplete CSI. The second contribution, which follows insights from the bound, is a new CSI sharing scheme that drastically reduces the large overhead associated with acquiring global CSI for joint transmission. In a nutshell, each RRH applies a local precoding matrix that creates low-dimensional effective channels that can be quantized more accurately with fewer bits, thereby reducing the overhead of sharing CSI. In addition to the CSI sharing-overhead, this scheme reduces the data rate that must be delivered to each RRH in the cluster.
The recently introduced online Minimum Peak Appointment Scheduling (MPAS) problem is a variant of the online bin-packing problem that allows for deferred decision making. Specifically, it allows for the problem to be split into an online phase where a stream of appointment requests arrive requiring a scheduled time, followed by an offline phase where those appointments are scheduled into rooms. Similar to the bin-packing problem, the aim is to use the minimum number of rooms in the final configuration. This model more accurately captures scheduling appointments than bin packing. For example, a dialysis patient needs to know what time to arrive for an appointment, but does not need to know the assigned station ahead of time. Previous work developed a randomized algorithm for this problem which achieved an asymptotic competitive ratio of at most 1.5, proving that online MPAS was fundamentally different from the online bin-packing problem. Our main contribution is to develop a new randomized algorithm for the problem that achieves an asymptotic competitive ratio under 1.455, indicating the potential for further progress. This improvement is attained by modifying the process for scheduling appointments to increase the density of the packing in the worst case, along with utilizing the dual of the bin-packing linear programming relaxation to perform the analysis. We also present the first known lower bound of 1.2 on the asymptotic competitive ratio of both deterministic and randomized online MPAS algorithm. These results demonstrate how deferred decision-making can be leveraged to yield improved worst-case performance, a phenomenon which should be investigated in a broader class of settings.
Sparse Conditional Random Field (CRF) is a powerful technique in computer vision and natural language processing for structured prediction. However, solving sparse CRFs in large-scale applications remains challenging. In this paper, we propose a novel safe dynamic screening method that exploits an accurate dual optimum estimation to identify and remove the irrelevant features during the training process. Thus, the problem size can be reduced continuously, leading to great savings in the computational cost without sacrificing any accuracy on the finally learned model. To the best of our knowledge, this is the first screening method which introduces the dual optimum estimation technique -- by carefully exploring and exploiting the strong convexity and the complex structure of the dual problem -- in static screening methods to dynamic screening. In this way, we can absorb the advantages of both the static and dynamic screening methods and avoid their drawbacks. Our estimation would be much more accurate than those developed based on the duality gap, which contributes to a much stronger screening rule. Moreover, our method is also the first screening method in sparse CRFs and even structure prediction models. Experimental results on both synthetic and real-world datasets demonstrate that the speedup gained by our method is significant.
This paper addresses join wireless and computing resource allocation in mobile edge computing (MEC) systems with several access points and with the possibility that users connect to many access points, and utilize the computation capability of many servers at the same time. The problem of sum transmission energy minimization under response time constraints is considered. It is proved, that the optimization problem is non-convex. The complexity of optimization of a part of the system parameters is investigated, and based on these results an Iterative Resource Allocation procedure is proposed, that converges to a local optimum. The performance of the joint resource allocation is evaluated by comparing it to lower and upper bounds defined by less or more flexible multi-cell MEC architectures. The results show that the free selection of the access point is crucial for good system performance.
The paper studies the multi-user precoding problem as a non-convex optimization problem for wireless multiple input and multiple output (MIMO) systems. In our work, we approximate the target Spectral Efficiency function with a novel computationally simpler function. Then, we reduce the precoding problem to an unconstrained optimization task using a special differential projection method and solve it by the Quasi-Newton L-BFGS iterative procedure to achieve gains in capacity. We are testing the proposed approach in several scenarios generated using Quadriga -- open-source software for generating realistic radio channel impulse response. Our method shows monotonic improvement over heuristic methods with reasonable computation time. The proposed L-BFGS optimization scheme is novel in this area and shows a significant advantage over the standard approaches. Proposed method has a simple implementation and can be a good reference for other heuristic algorithms in this field.
Satellite networks are promising to provide ubiquitous and high-capacity global wireless connectivity. Traditionally, satellite networks are modeled by placing satellites on a grid of multiple circular orbit geometries. Such a network model, however, requires intricate system-level simulations to evaluate coverage performance, and analytical understanding of the satellite network is limited. Continuing the success of stochastic geometry in a tractable analysis for terrestrial networks, in this paper, we develop novel models that are tractable for the coverage analysis of satellite networks using stochastic geometry. By modeling the locations of satellites and users using Poisson point processes on the surfaces of concentric spheres, we characterize analytical expressions for the coverage probability of a typical downlink user as a function of relevant parameters, including path-loss exponent, satellite height, density, and Nakagami fading parameter. Then, we also derive a tight lower bound of the coverage probability in closed-form expression while keeping full generality. Leveraging the derived expression, we identify the optimal density of satellites in terms of the height and the path-loss exponent. Our key finding is that the optimal average number of satellites decreases logarithmically with the network height to maximize the coverage performance. Simulation results verify the exactness of the derived expressions.
With the goal of improving spectral efficiency, complex rotation-based precoding and power allocation schemes are developed for two multiple-input multiple-output (MIMO) communication systems, namely, simultaneous wireless information and power transfer (SWIPT) and physical layer multicasting. While the state-of-the-art solutions for these problems use very different approaches, the proposed approach treats them similarly using a general tool and works efficiently for any number of antennas at each node. Through modeling the precoder using complex rotation matrices, objective functions (transmission rates) of the above systems can be formulated and solved in a similar structure. Hence, this approach simplifies signaling design for MIMO systems and can reduce the hardware complexity by having one set of parameters to optimize. Extensive numerical results show that the proposed approach outperforms state-of-the-art solutions for both problems. It increases transmission rates for multicasting and achieves higher rate-energy regions in the SWIPT case. In both cases, the improvement is significant (20%-30%) in practically important settings where the users have one or two antennas. Furthermore, the new precoders are less time-consuming than the existing solutions.