WSNs are vital in a variety of applications, including environmental monitoring, industrial process control, and healthcare. WSNs are a network of spatially scattered and dedicated sensors that monitor and record the physical conditions of the environment.Significant obstacles to WSN efficiency include the restricted power and processing capabilities of individual sensor nodes and the issues with remote and inaccessible deployment sites. By maximising power utilisation, enhancing network effectiveness, and ensuring adaptability and durability through dispersed and decentralised operation, this study suggests a comprehensive approach to dealing with these challenges. The suggested methodology involves data compression, aggregation, and energy-efficient protocol. Using these techniques, WSN lifetimes can be increased and overall performance can be improved. In this study we also provide methods to collect data generated by several nodes in the WSN and store it in a remote cloud such that it can be processed and analyzed whenever it is required.
In the era of the Internet of Things (IoT), the retrieval of relevant medical information has become essential for efficient clinical decision-making. This paper introduces MedFusionRank, a novel approach to zero-shot medical information retrieval (MIR) that combines the strengths of pre-trained language models and statistical methods while addressing their limitations. The proposed approach leverages a pre-trained BERT-style model to extract compact yet informative keywords. These keywords are then enriched with domain knowledge by linking them to conceptual entities within a medical knowledge graph. Experimental evaluations on medical datasets demonstrate MedFusion Rank's superior performance over existing methods, with promising results with a variety of evaluation metrics. MedFusionRank demonstrates efficacy in retrieving relevant information, even from short or single-term queries.
Internet of Things applications have gained widespread recognition for their efficacy in typical scenarios, such as smart cities and smart healthcare. Nonetheless, there exist numerous unconventional situations where IoT technologies have not yet been massively applied, though they can be extremely useful. One of such domains is the underground mining sector, where enhancing automation monitoring through wireless communications is of essential significance. In this paper, we focus on the development, implementation, and evaluation of a LoRa-based multi-hop network tailored specifically for monitoring underground mining environments, where data traffic is sporadic, but energy efficiency is of paramount importance. We hence define a synchronization framework that makes it possible for the nodes to sleep for most of the time, waking up only when they need to exchange traffic. Notably, our network achieves a sub 40us proven synchronization accuracy between parent-child pairs with minimum overhead for diverse topologies, rendering it highly viable for subterranean operations. Furthermore, for proper network dimensioning, we model the interplay between network's throughput, frame size, and sampling periods of potential applications. Moreover, we propose a model to estimate devices' duty cycle based on their position within the multi-hop network, along with empirical observations for its validation. The proposed models make it possible to optimize the network's performance to meet the specific demands that can arise from the different subterranean use cases, in which robustness, low power operation, and compliance with radio-frequency regulations are key requirements that must be met.
The application of ionizing radiation for diagnostic imaging is common around the globe. However, the process of imaging, itself, remains to be a relatively hazardous operation. Therefore, it is preferable to use as low a dose of ionizing radiation as possible, particularly in computed tomography (CT) imaging systems, where multiple x-ray operations are performed for the reconstruction of slices of body tissues. A popular method for radiation dose reduction in CT imaging is known as the quarter-dose technique, which reduces the x-ray dose but can cause a loss of image sharpness. Since CT image reconstruction from directional x-rays is a nonlinear process, it is analytically difficult to correct the effect of dose reduction on image quality. Recent and popular deep-learning approaches provide an intriguing possibility of image enhancement for low-dose artifacts. Some recent works propose combinations of multiple deep-learning and classical methods for this purpose, which over-complicate the process. However, it is observed here that the straight utilization of the well-known U-NET provides very successful results for the correction of low-dose artifacts. Blind tests with actual radiologists reveal that the U-NET enhanced quarter-dose CT images not only provide an immense visual improvement over the low-dose versions, but also become diagnostically preferable images, even when compared to their full-dose CT versions.
Developing clinical prediction models (e.g., mortality prediction) based on electronic health records (EHRs) typically relies on expert opinion for feature selection and adjusting observation window size. This burdens experts and creates a bottleneck in the development process. We propose Retrieval-Enhanced Medical prediction model (REMed) to address such challenges. REMed can essentially evaluate an unlimited number of clinical events, select the relevant ones, and make predictions. This approach effectively eliminates the need for manual feature selection and enables an unrestricted observation window. We verified these properties through experiments on 27 clinical tasks and two independent cohorts from publicly available EHR datasets, where REMed outperformed other contemporary architectures that aim to handle as many events as possible. Notably, we found that the preferences of REMed align closely with those of medical experts. We expect our approach to significantly expedite the development of EHR prediction models by minimizing clinicians' need for manual involvement.
In recent years, the development of instance segmentation has garnered significant attention in a wide range of applications. However, the training of a fully-supervised instance segmentation model requires costly both instance-level and pixel-level annotations. In contrast, weakly-supervised instance segmentation methods (i.e., with image-level class labels or point labels) struggle to satisfy the accuracy and recall requirements of practical scenarios. In this paper, we propose a novel paradigm called synthetic instance segmentation (SISeg), which achieves Instance Segmentation results from image masks predicted using off-the-shelf semantic segmentation models. SISeg does not require training a semantic or/and instance segmentation model and avoids the need for instance-level image annotations. Therefore, it is highly efficient. Specifically, we first obtain a semantic segmentation mask of the input image via a trained semantic segmentation model. Then, we calculate a displacement field vector for each pixel based on the segmentation mask, which can indicate representations belonging to the same class but different instances, i.e., obtaining the instance-level object information. Finally, instance segmentation results are obtained after being refined by a learnable category-agnostic object boundary branch. Extensive experimental results on two challenging datasets and representative semantic segmentation baselines (including CNNs and Transformers) demonstrate that SISeg can achieve competitive results compared to the state-of-the-art fully-supervised instance segmentation methods without the need for additional human resources or increased computational costs. The code is available at: SISeg
Distribution alignment can be used to learn invariant representations with applications in fairness and robustness. Most prior works resort to adversarial alignment methods but the resulting minimax problems are unstable and challenging to optimize. Non-adversarial likelihood-based approaches either require model invertibility, impose constraints on the latent prior, or lack a generic framework for alignment. To overcome these limitations, we propose a non-adversarial VAE-based alignment method that can be applied to any model pipeline. We develop a set of alignment upper bounds (including a noisy bound) that have VAE-like objectives but with a different perspective. We carefully compare our method to prior VAE-based alignment approaches both theoretically and empirically. Finally, we demonstrate that our novel alignment losses can replace adversarial losses in standard invariant representation learning pipelines without modifying the original architectures -- thereby significantly broadening the applicability of non-adversarial alignment methods.
Tensor decomposition is an important tool for multiway data analysis. In practice, the data is often sparse yet associated with rich temporal information. Existing methods, however, often under-use the time information and ignore the structural knowledge within the sparsely observed tensor entries. To overcome these limitations and to better capture the underlying temporal structure, we propose Dynamic EMbedIngs fOr dynamic Tensor dEcomposition (DEMOTE). We develop a neural diffusion-reaction process to estimate dynamic embeddings for the entities in each tensor mode. Specifically, based on the observed tensor entries, we build a multi-partite graph to encode the correlation between the entities. We construct a graph diffusion process to co-evolve the embedding trajectories of the correlated entities and use a neural network to construct a reaction process for each individual entity. In this way, our model can capture both the commonalities and personalities during the evolution of the embeddings for different entities. We then use a neural network to model the entry value as a nonlinear function of the embedding trajectories. For model estimation, we combine ODE solvers to develop a stochastic mini-batch learning algorithm. We propose a stratified sampling method to balance the cost of processing each mini-batch so as to improve the overall efficiency. We show the advantage of our approach in both simulation study and real-world applications. The code is available at //github.com/wzhut/Dynamic-Tensor-Decomposition-via-Neural-Diffusion-Reaction-Processes.
Denoising diffusion models have shown great promise in human motion synthesis conditioned on natural language descriptions. However, integrating spatial constraints, such as pre-defined motion trajectories and obstacles, remains a challenge despite being essential for bridging the gap between isolated human motion and its surrounding environment. To address this issue, we propose Guided Motion Diffusion (GMD), a method that incorporates spatial constraints into the motion generation process. Specifically, we propose an effective feature projection scheme that manipulates motion representation to enhance the coherency between spatial information and local poses. Together with a new imputation formulation, the generated motion can reliably conform to spatial constraints such as global motion trajectories. Furthermore, given sparse spatial constraints (e.g. sparse keyframes), we introduce a new dense guidance approach to turn a sparse signal, which is susceptible to being ignored during the reverse steps, into denser signals to guide the generated motion to the given constraints. Our extensive experiments justify the development of GMD, which achieves a significant improvement over state-of-the-art methods in text-based motion generation while allowing control of the synthesized motions with spatial constraints.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.