亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the non-uniform sparsest cut problem, we are given a supply graph G and a demand graph D, both with the same set of nodes V. The goal is to find a cut of V that minimizes the ratio of the total capacity on the edges of G crossing the cut over the total demand of the crossing edges of D. In this work, we study the non-uniform sparsest cut problem for supply graphs with bounded treewidth k. For this case, Gupta, Talwar and Witmer [STOC 2013] obtained a 2-approximation with polynomial running time for fixed k, and the question of whether there exists a c-approximation algorithm for a constant c independent of k, that runs in FPT time, remained open. We answer this question in the affirmative. We design a 2-approximation algorithm for the non-uniform sparsest cut with bounded treewidth supply graphs that runs in FPT time, when parameterized by the treewidth. Our algorithm is based on rounding the optimal solution of a linear programming relaxation inspired by the Sherali-Adams hierarchy. In contrast to the classic Sherali-Adams approach, we construct a relaxation driven by a tree decomposition of the supply graph by including a carefully chosen set of lifting variables and constraints to encode information of subsets of nodes with super-constant size, and at the same time we have a sufficiently small linear program that can be solved in FPT time.

相關內容

FPT:International Conference on Field-Programmable Technology。 Explanation:現場可編程技術國際會議。 Publisher:IEEE。 SIT:

Solving high-dimensional optimal control problems in real-time is an important but challenging problem, with applications to multi-agent path planning problems, which have drawn increased attention given the growing popularity of drones in recent years. In this paper, we propose a novel neural network method called SympOCnet that applies the Symplectic network to solve high-dimensional optimal control problems with state constraints. We present several numerical results on path planning problems in two-dimensional and three-dimensional spaces. Specifically, we demonstrate that our SympOCnet can solve a problem with more than 500 dimensions in 1.5 hours on a single GPU, which shows the effectiveness and efficiency of SympOCnet. The proposed method is scalable and has the potential to solve truly high-dimensional path planning problems in real-time.

We develop an \textit{a posteriori} error analysis for the time of the first occurrence of an event, specifically, the time at which a functional of the solution to a partial differential equation (PDE) first achieves a threshold value on a given time interval. This novel quantity of interest (QoI) differs from classical QoIs which are modeled as bounded linear (or nonlinear) functionals. Taylor's theorem and an adjoint-based \textit{a posteriori} analysis is used to derive computable and accurate error estimates for semi-linear parabolic and hyperbolic PDEs. The accuracy of the error estimates is demonstrated through numerical solutions of the one-dimensional heat equation and linearized shallow water equations (SWE), representing parabolic and hyperbolic cases, respectively.

We propose a novel method for computing $p$-values based on nested sampling (NS) applied to the sampling space rather than the parameter space of the problem, in contrast to its usage in Bayesian computation. The computational cost of NS scales as $\log^2{1/p}$, which compares favorably to the $1/p$ scaling for Monte Carlo (MC) simulations. For significances greater than about $4\sigma$ in both a toy problem and a simplified resonance search, we show that NS requires orders of magnitude fewer simulations than ordinary MC estimates. This is particularly relevant for high-energy physics, which adopts a $5\sigma$ gold standard for discovery. We conclude with remarks on new connections between Bayesian and frequentist computation and possibilities for tuning NS implementations for still better performance in this setting.

We consider a class of statistical estimation problems in which we are given a random data matrix ${\boldsymbol X}\in {\mathbb R}^{n\times d}$ (and possibly some labels ${\boldsymbol y}\in{\mathbb R}^n$) and would like to estimate a coefficient vector ${\boldsymbol \theta}\in{\mathbb R}^d$ (or possibly a constant number of such vectors). Special cases include low-rank matrix estimation and regularized estimation in generalized linear models (e.g., sparse regression). First order methods proceed by iteratively multiplying current estimates by ${\boldsymbol X}$ or its transpose. Examples include gradient descent or its accelerated variants. Celentano, Montanari, Wu proved that for any constant number of iterations (matrix vector multiplications), the optimal first order algorithm is a specific approximate message passing algorithm (known as `Bayes AMP'). The error of this estimator can be characterized in the high-dimensional asymptotics $n,d\to\infty$, $n/d\to\delta$, and provides a lower bound to the estimation error of any first order algorithm. Here we present a simpler proof of the same result, and generalize it to broader classes of data distributions and of first order algorithms, including algorithms with non-separable nonlinearities. Most importantly, the new proof technique does not require to construct an equivalent tree-structured estimation problem, and is therefore susceptible of a broader range of applications.

Freight carriers rely on tactical planning to design their service network to satisfy demand in a cost-effective way. For computational tractability, deterministic and cyclic Service Network Design (SND) formulations are used to solve large-scale problems. A central input is the periodic demand, that is, the demand expected to repeat in every period in the planning horizon. In practice, demand is predicted by a time series forecasting model and the periodic demand is the average of those forecasts. This is, however, only one of many possible mappings. The problem consisting in selecting this mapping has hitherto been overlooked in the literature. We propose to use the structure of the downstream decision-making problem to select a good mapping. For this purpose, we introduce a multilevel mathematical programming formulation that explicitly links the time series forecasts to the SND problem of interest. The solution is a periodic demand estimate that minimizes costs over the tactical planning horizon. We report results in an extensive empirical study of a large-scale application from the Canadian National Railway Company. They clearly show the importance of the periodic demand estimation problem. Indeed, the planning costs exhibit an important variation over different periodic demand estimates and using an estimate different from the mean forecast can lead to substantial cost reductions. Moreover, the costs associated with the periodic demand estimates based on forecasts were comparable to, or even better than those obtained using the mean of actual demand.

We develop two adaptive discretization algorithms for convex semi-infinite optimization, which terminate after finitely many iterations at approximate solutions of arbitrary precision. In particular, they terminate at a feasible point of the considered optimization problem. Compared to the existing finitely feasible algorithms for general semi-infinite optimization problems, our algorithms work with considerably smaller discretizations and are thus computationally favorable. Also, our algorithms terminate at approximate solutions of arbitrary precision, while for general semi-infinite optimization problems the best possible approximate-solution precision can be arbitrarily bad. All occurring finite optimization subproblems in our algorithms have to be solved only approximately, and continuity is the only regularity assumption on our objective and constraint functions. Applications to parametric and non-parametric regression problems under shape constraints are discussed.

In this paper we investigate the parameterized complexity for NP-hard graph problems parameterized by a structural parameter modular-width. We develop a recipe that is able to simplify the process of obtaining polynomial Turing compressions for a class of graph problems parameterized by modular-width. Moreover, we prove that several problems, which include \textsc{chromatic number, independent set}, \textsc{Hamiltonian cycle}, etc. have polynomial Turing compressions parameterized by modular-width. In addition, under the assumption that P $\neq$ NP, we provide tight kernels for a few problems such as \textsc{Steiner tree} parameterized by modular-width. Meanwhile, we demonstrate that some problems, which includes \textsc{dominating set}, \textsc{odd cycle transversal}, \textsc{connected vertex cover}, etc. are fixed-parameter tractable parameterized by modular-width.

We establish how the coefficients of a sparse polynomial system influence the sum (or the trace) of its zeros. As an application, we develop numerical tests for verifying whether a set of solutions to a sparse system is complete. These algorithms extend the classical trace test in numerical algebraic geometry. Our results rely on both the analysis of the structure of sparse resultants as well as an extension of Esterov's results on monodromy groups of sparse systems.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.

北京阿比特科技有限公司