亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Longitudinal interaction studies with Socially Assistive Robots are crucial to ensure that the robot is relevant for long-term use and its perceptions are not prone to the novelty effect. In this paper, we present a dynamic Bayesian network (DBN) to capture the longitudinal interactions participants had with a teleoperated robot coach (RC) delivering mindfulness sessions. The DBN model is used to study complex, temporal interactions between the participants self-reported personality traits, weekly baseline wellbeing scores, session ratings, and facial AUs elicited during the sessions in a 5-week longitudinal study. DBN modelling involves learning a graphical representation that facilitates intuitive understanding of how multiple components contribute to the longitudinal changes in session ratings corresponding to the perceptions of the RC, and participants relaxation and calm levels. The learnt model captures the following within and between sessions aspects of the longitudinal interaction study: influence of the 5 personality dimensions on the facial AU states and the session ratings, influence of facial AU states on the session ratings, and the influences within the items of the session ratings. The DBN structure is learnt using first 3 time points and the obtained model is used to predict the session ratings of the last 2 time points of the 5-week longitudinal data. The predictions are quantified using subject-wise RMSE and R2 scores. We also demonstrate two applications of the model, namely, imputation of missing values in the dataset and estimation of longitudinal session ratings of a new participant with a given personality profile. The obtained DBN model thus facilitates learning of conditional dependency structure between variables in the longitudinal data and offers inferences and conceptual understanding which are not possible through other regression methodologies.

相關內容

DBN是一種堆疊許多獨立的無監督網絡的技術,這種網絡使用每個網絡的隱藏層作為下一層的輸入。通常,使用受限玻爾茲曼機(RBM)或自動編碼器的“堆棧” 。

The textile and apparel industries have grown tremendously over the last years. Customers no longer have to visit many stores, stand in long queues, or try on garments in dressing rooms as millions of products are now available in online catalogs. However, given the plethora of options available, an effective recommendation system is necessary to properly sort, order, and communicate relevant product material or information to users. Effective fashion RS can have a noticeable impact on billions of customers' shopping experiences and increase sales and revenues on the provider-side. The goal of this survey is to provide a review of recommender systems that operate in the specific vertical domain of garment and fashion products. We have identified the most pressing challenges in fashion RS research and created a taxonomy that categorizes the literature according to the objective they are trying to accomplish (e.g., item or outfit recommendation, size recommendation, explainability, among others) and type of side-information (users, items, context). We have also identified the most important evaluation goals and perspectives (outfit generation, outfit recommendation, pairing recommendation, and fill-in-the-blank outfit compatibility prediction) and the most commonly used datasets and evaluation metrics.

The COVID-19 pandemic has stimulated the shift of work and life from the physical to a more digital format. To survive and thrive, companies have integrated more digital-enabled elements into their businesses to facilitate resilience, by avoiding potential close physical contact. Following Design Science Research Methodology (DSRM), this paper builds a workflow management system for contactless digital resilience when customers are purchasing in a store. Customer behavior, in coping with digital resilience against COVID-19, is illustrated and empirically tested, using a derivative model in which the constructs are from classical theories. Data was collected from individual customers via the Internet, and 247 completed questionnaires were examined.

In health cohort studies, repeated measures of markers are often used to describe the natural history of a disease. Joint models allow to study their evolution by taking into account the possible informative dropout usually due to clinical events. However, joint modeling developments mostly focused on continuous Gaussian markers while, in an increasing number of studies, the actual quantity of interest is non-directly measurable; it constitutes a latent variable evaluated by a set of observed indicators from questionnaires or measurement scales. Classical examples include anxiety, fatigue, cognition. In this work,we explain how joint models can be extended to the framework of a latent quantity measured over time by indicators of different nature (e.g. continuous, binary, ordinal). The longitudinal submodel describes the evolution over time of the quantity of interest defined as a latent process in a structural mixed model, and links the latent process to each observation of the indicators through appropriate measurement models. Simultaneously, the risk of multi-cause event is modelled via a proportional cause-specific hazard model that includes a function of the mixed model elements as linear predictor to take into account the association between the latent process and the risk of event. Estimation, carried out in the maximum likelihood framework and implemented in the R-package JLPM, has been validated by simulations. The methodology is illustrated in the French cohort on Multiple-System Atrophy (MSA), a rare and fatal neurodegenerative disease, with the study of dysphagia progression over time stopped by the occurrence of death.

Certain wheeled mobile robots e.g., electric wheelchairs, can operate through indirect joystick controls from users. Correct steering angle becomes essential when the user should determine the vehicle direction and velocity, in particular for differential wheeled vehicles since the vehicle velocity and direction are controlled with only two actuating wheels. This problem gets more challenging when complex curves should be realized by the user. A novel assistive controller with safety constraints is needed to address these problems. Also, the classic control methods mostly require the desired states beforehand which completely contradicts human's spontaneous decisions on the desired location to go. In this work, we develop a novel assistive control strategy based on differential geometry relying on only joystick inputs and vehicle states where the controller does not require any desired states. We begin with explaining the vehicle kinematics and our designed Darboux frame kinematics on a contact point of a virtual wheel and plane. Next, the geometric controller using the Darboux frame kinematics is designed for having smooth trajectories under certain safety constraints. We experiment our approach with different participants and evaluate its performance in various routes.

In recent years, autonomous networks have been designed with Predictive Quality of Service (PQoS) in mind, as a means for applications operating in the industrial and/or automotive sectors to predict unanticipated Quality of Service (QoS) changes and react accordingly. In this context, Reinforcement Learning (RL) has come out as a promising approach to perform accurate predictions, and optimize the efficiency and adaptability of wireless networks. Along these lines, in this paper we propose the design of a new entity, implemented at the RAN-level that, with the support of an RL framework, implements PQoS functionalities. Specifically, we focus on the design of the reward function of the learning agent, able to convert QoS estimates into appropriate countermeasures if QoS requirements are not satisfied. We demonstrate via ns-3 simulations that our approach achieves the best trade-off in terms of QoS and Quality of Experience (QoE) performance of end users in a teleoperated-driving-like scenario, compared to other baseline solutions.

The collective attention on online items such as web pages, search terms, and videos reflects trends that are of social, cultural, and economic interest. Moreover, attention trends of different items exhibit mutual influence via mechanisms such as hyperlinks or recommendations. Many visualisation tools exist for time series, network evolution, or network influence; however, few systems connect all three. In this work, we present AttentionFlow, a new system to visualise networks of time series and the dynamic influence they have on one another. Centred around an ego node, our system simultaneously presents the time series on each node using two visual encodings: a tree ring for an overview and a line chart for details. AttentionFlow supports interactions such as overlaying time series of influence and filtering neighbours by time or flux. We demonstrate AttentionFlow using two real-world datasets, VevoMusic and WikiTraffic. We show that attention spikes in songs can be explained by external events such as major awards, or changes in the network such as the release of a new song. Separate case studies also demonstrate how an artist's influence changes over their career, and that correlated Wikipedia traffic is driven by cultural interests. More broadly, AttentionFlow can be generalised to visualise networks of time series on physical infrastructures such as road networks, or natural phenomena such as weather and geological measurements.

Understanding latent user needs beneath shopping behaviors is critical to e-commercial applications. Without a proper definition of user needs in e-commerce, most industry solutions are not driven directly by user needs at current stage, which prevents them from further improving user satisfaction. Representing implicit user needs explicitly as nodes like "outdoor barbecue" or "keep warm for kids" in a knowledge graph, provides new imagination for various e- commerce applications. Backed by such an e-commerce knowledge graph, we propose a supervised learning algorithm to conceptualize user needs from their transaction history as "concept" nodes in the graph and infer those concepts for each user through a deep attentive model. Offline experiments demonstrate the effectiveness and stability of our model, and online industry strength tests show substantial advantages of such user needs understanding.

To solve complex real-world problems with reinforcement learning, we cannot rely on manually specified reward functions. Instead, we can have humans communicate an objective to the agent directly. In this work, we combine two approaches to learning from human feedback: expert demonstrations and trajectory preferences. We train a deep neural network to model the reward function and use its predicted reward to train an DQN-based deep reinforcement learning agent on 9 Atari games. Our approach beats the imitation learning baseline in 7 games and achieves strictly superhuman performance on 2 games without using game rewards. Additionally, we investigate the goodness of fit of the reward model, present some reward hacking problems, and study the effects of noise in the human labels.

There is a need for systems to dynamically interact with ageing populations to gather information, monitor health condition and provide support, especially after hospital discharge or at-home settings. Several smart devices have been delivered by digital health, bundled with telemedicine systems, smartphone and other digital services. While such solutions offer personalised data and suggestions, the real disruptive step comes from the interaction of new digital ecosystem, represented by chatbots. Chatbots will play a leading role by embodying the function of a virtual assistant and bridging the gap between patients and clinicians. Powered by AI and machine learning algorithms, chatbots are forecasted to save healthcare costs when used in place of a human or assist them as a preliminary step of helping to assess a condition and providing self-care recommendations. This paper describes integrating chatbots into telemedicine systems intended for elderly patient after their hospital discharge. The paper discusses possible ways to utilise chatbots to assist healthcare providers and support patients with their condition.

Internet of Things (IoT) infrastructure within the physical library environment is the basis for an integrative, hybrid approach to digital resource recommenders. The IoT infrastructure provides mobile, dynamic wayfinding support for items in the collection, which includes features for location-based recommendations. The evaluation and analysis herein clarified the nature of users' requests for recommendations based on their location, and describes subject areas of the library for which users request recommendations. The results indicated that users of IoT-based recommendations are interested in a broad distribution of subjects, with a short-head distribution from this collection in American and English Literature. A long-tail finding showed a diversity of topics that are recommended to users in the library book stacks with IoT-powered recommendations.

北京阿比特科技有限公司