亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Autonomous, agile quadrotor flight raises fundamental challenges for robotics research in terms of perception, planning, learning, and control. A versatile and standardized platform is needed to accelerate research and let practitioners focus on the core problems. To this end, we present Agilicious, a co-designed hardware and software framework tailored to autonomous, agile quadrotor flight. It is completely open-source and open-hardware and supports both model-based and neural-network--based controllers. Also, it provides high thrust-to-weight and torque-to-inertia ratios for agility, onboard vision sensors, GPU-accelerated compute hardware for real-time perception and neural-network inference, a real-time flight controller, and a versatile software stack. In contrast to existing frameworks, Agilicious offers a unique combination of flexible software stack and high-performance hardware. We compare Agilicious with prior works and demonstrate it on different agile tasks, using both model-based and neural-network--based controllers. Our demonstrators include trajectory tracking at up to 5g and 70 km/h in a motion-capture system, and vision-based acrobatic flight and obstacle avoidance in both structured and unstructured environments using solely onboard perception. Finally, we demonstrate its use for hardware-in-the-loop simulation in virtual-reality environments. Thanks to its versatility, we believe that Agilicious supports the next generation of scientific and industrial quadrotor research.

相關內容

Synthetic datasets, recognized for their cost effectiveness, play a pivotal role in advancing computer vision tasks and techniques. However, when it comes to remote sensing image processing, the creation of synthetic datasets becomes challenging due to the demand for larger-scale and more diverse 3D models. This complexity is compounded by the difficulties associated with real remote sensing datasets, including limited data acquisition and high annotation costs, which amplifies the need for high-quality synthetic alternatives. To address this, we present SyntheWorld, a synthetic dataset unparalleled in quality, diversity, and scale. It includes 40,000 images with submeter-level pixels and fine-grained land cover annotations of eight categories, and it also provides 40,000 pairs of bitemporal image pairs with building change annotations for building change detection task. We conduct experiments on multiple benchmark remote sensing datasets to verify the effectiveness of SyntheWorld and to investigate the conditions under which our synthetic data yield advantages. We will release SyntheWorld to facilitate remote sensing image processing research.

In Federated Learning, model training is performed across multiple computing devices, where only parameters are shared with a common central server without exchanging their data instances. This strategy assumes abundance of resources on individual clients and utilizes these resources to build a richer model as user's models. However, when the assumption of the abundance of resources is violated, learning may not be possible as some nodes may not be able to participate in the process. In this paper, we propose a sparse form of federated learning that performs well in a Resource Constrained Environment. Our goal is to make learning possible, regardless of a node's space, computing, or bandwidth scarcity. The method is based on the observation that model size viz a viz available resources defines resource scarcity, which entails that reduction of the number of parameters without affecting accuracy is key to model training in a resource-constrained environment. In this work, the Lottery Ticket Hypothesis approach is utilized to progressively sparsify models to encourage nodes with resource scarcity to participate in collaborative training. We validate Equitable-FL on the $MNIST$, $F-MNIST$, and $CIFAR-10$ benchmark datasets, as well as the $Brain-MRI$ data and the $PlantVillage$ datasets. Further, we examine the effect of sparsity on performance, model size compaction, and speed-up for training. Results obtained from experiments performed for training convolutional neural networks validate the efficacy of Equitable-FL in heterogeneous resource-constrained learning environment.

Developing the next generation of household robot helpers requires combining locomotion and interaction capabilities, which is generally referred to as mobile manipulation (MoMa). MoMa tasks are difficult due to the large action space of the robot and the common multi-objective nature of the task, e.g., efficiently reaching a goal while avoiding obstacles. Current approaches often segregate tasks into navigation without manipulation and stationary manipulation without locomotion by manually matching parts of the action space to MoMa sub-objectives (e.g. base actions for locomotion objectives and arm actions for manipulation). This solution prevents simultaneous combinations of locomotion and interaction degrees of freedom and requires human domain knowledge for both partitioning the action space and matching the action parts to the sub-objectives. In this paper, we introduce Causal MoMa, a new framework to train policies for typical MoMa tasks that makes use of the most favorable subspace of the robot's action space to address each sub-objective. Causal MoMa automatically discovers the causal dependencies between actions and terms of the reward function and exploits these dependencies in a causal policy learning procedure that reduces gradient variance compared to previous state-of-the-art policy gradient algorithms, improving convergence and results. We evaluate the performance of Causal MoMa on three types of simulated robots across different MoMa tasks and demonstrate success in transferring the policies trained in simulation directly to a real robot, where our agent is able to follow moving goals and react to dynamic obstacles while simultaneously and synergistically controlling the whole-body: base, arm, and head. More information at //sites.google.com/view/causal-moma.

A gaze-fixating robot perceives distance to the fixated object and relative positions of surrounding objects immediately, accurately, and robustly. We show how fixation, which is the act of looking at one object while moving, exploits regularities in the geometry of 3D space to obtain this information. These regularities introduce rotation-translation couplings that are not commonly used in structure from motion. To validate, we use a Franka Emika Robot with an RGB camera. We a) find that error in distance estimate is less than 5 mm at a distance of 15 cm, and b) show how relative position can be used to find obstacles under challenging scenarios. We combine accurate distance estimates and obstacle information into a reactive robot behavior that is able to pick up objects of unknown size, while impeded by unforeseen obstacles. Project page: //oxidification.com/p/one-object-at-a-time/ .

The recognition of information in floor plan data requires the use of detection and segmentation models. However, relying on several single-task models can result in ineffective utilization of relevant information when there are multiple tasks present simultaneously. To address this challenge, we introduce MuraNet, an attention-based multi-task model for segmentation and detection tasks in floor plan data. In MuraNet, we adopt a unified encoder called MURA as the backbone with two separated branches: an enhanced segmentation decoder branch and a decoupled detection head branch based on YOLOX, for segmentation and detection tasks respectively. The architecture of MuraNet is designed to leverage the fact that walls, doors, and windows usually constitute the primary structure of a floor plan's architecture. By jointly training the model on both detection and segmentation tasks, we believe MuraNet can effectively extract and utilize relevant features for both tasks. Our experiments on the CubiCasa5k public dataset show that MuraNet improves convergence speed during training compared to single-task models like U-Net and YOLOv3. Moreover, we observe improvements in the average AP and IoU in detection and segmentation tasks, respectively.Our ablation experiments demonstrate that the attention-based unified backbone of MuraNet achieves better feature extraction in floor plan recognition tasks, and the use of decoupled multi-head branches for different tasks further improves model performance. We believe that our proposed MuraNet model can address the disadvantages of single-task models and improve the accuracy and efficiency of floor plan data recognition.

This paper presents a solution to the challenge of mitigating carbon emissions from hosting large-scale machine learning (ML) inference services. ML inference is critical to modern technology products, but it is also a significant contributor to carbon footprint. We introduce Clover, a carbon-friendly ML inference service runtime system that balances performance, accuracy, and carbon emissions through mixed-quality models and GPU resource partitioning. Our experimental results demonstrate that Clover is effective in substantially reducing carbon emissions while maintaining high accuracy and meeting service level agreement (SLA) targets.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司