亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a $\widetilde{O}(m\sqrt{\tau}+n\tau)$ time algorithm for finding a minimum-cost flow in graphs with $n$ vertices and $m$ edges, given a tree decomposition of width $\tau$ and polynomially bounded integer costs and capacities. This improves upon the current best algorithms for general linear programs bounded by treewidth which run in $\widetilde{O}(m \tau^{(\omega+1)/2})$ time by [Dong-Lee-Ye,21] and [Gu-Song,22], where $\omega \approx 2.37$ is the matrix multiplication exponent. Our approach leverages recent advances in structured linear program solvers and robust interior point methods. As a corollary, for any graph $G$ with $n$ vertices, $m$ edges, and treewidth $\tau$, we obtain a $\widetilde{O}(\tau^3 \cdot m)$ time algorithm to compute a tree decomposition of $G$ with width $O(\tau \cdot \log n)$.

相關內容

We consider structured approximation of measures in Wasserstein space $W_p(\mathbb{R}^d)$ for $p\in[1,\infty)$ by discrete and piecewise constant measures based on a scaled Voronoi partition of $\mathbb{R}^d$. We show that if a full rank lattice $\Lambda$ is scaled by a factor of $h\in(0,1]$, then approximation of a measure based on the Voronoi partition of $h\Lambda$ is $O(h)$ regardless of $d$ or $p$. We then use a covering argument to show that $N$-term approximations of compactly supported measures is $O(N^{-\frac1d})$ which matches known rates for optimal quantizers and empirical measure approximation in most instances. Finally, we extend these results to noncompactly supported measures with sufficient decay.

Modern detection transformers (DETRs) use a set of object queries to predict a list of bounding boxes, sort them by their classification confidence scores, and select the top-ranked predictions as the final detection results for the given input image. A highly performant object detector requires accurate ranking for the bounding box predictions. For DETR-based detectors, the top-ranked bounding boxes suffer from less accurate localization quality due to the misalignment between classification scores and localization accuracy, thus impeding the construction of high-quality detectors. In this work, we introduce a simple and highly performant DETR-based object detector by proposing a series of rank-oriented designs, combinedly called Rank-DETR. Our key contributions include: (i) a rank-oriented architecture design that can prompt positive predictions and suppress the negative ones to ensure lower false positive rates, as well as (ii) a rank-oriented loss function and matching cost design that prioritizes predictions of more accurate localization accuracy during ranking to boost the AP under high IoU thresholds. We apply our method to improve the recent SOTA methods (e.g., H-DETR and DINO-DETR) and report strong COCO object detection results when using different backbones such as ResNet-$50$, Swin-T, and Swin-L, demonstrating the effectiveness of our approach. Code is available at \url{//github.com/LeapLabTHU/Rank-DETR}.

This paper studies the prediction of a target $\mathbf{z}$ from a pair of random variables $(\mathbf{x},\mathbf{y})$, where the ground-truth predictor is additive $\mathbb{E}[\mathbf{z} \mid \mathbf{x},\mathbf{y}] = f_\star(\mathbf{x}) +g_{\star}(\mathbf{y})$. We study the performance of empirical risk minimization (ERM) over functions $f+g$, $f \in F$ and $g \in G$, fit on a given training distribution, but evaluated on a test distribution which exhibits covariate shift. We show that, when the class $F$ is "simpler" than $G$ (measured, e.g., in terms of its metric entropy), our predictor is more resilient to heterogenous covariate shifts} in which the shift in $\mathbf{x}$ is much greater than that in $\mathbf{y}$. Our analysis proceeds by demonstrating that ERM behaves qualitatively similarly to orthogonal machine learning: the rate at which ERM recovers the $f$-component of the predictor has only a lower-order dependence on the complexity of the class $G$, adjusted for partial non-indentifiability introduced by the additive structure. These results rely on a novel H\"older style inequality for the Dudley integral which may be of independent interest. Moreover, we corroborate our theoretical findings with experiments demonstrating improved resilience to shifts in "simpler" features across numerous domains.

We consider the variable selection problem for two-sample tests, aiming to select the most informative variables to distinguish samples from two groups. To solve this problem, we propose a framework based on the kernel maximum mean discrepancy (MMD). Our approach seeks a group of variables with a pre-specified size that maximizes the variance-regularized MMD statistics. This formulation also corresponds to the minimization of asymptotic type-II error while controlling type-I error, as studied in the literature. We present mixed-integer programming formulations and develop exact and approximation algorithms with performance guarantees for different choices of kernel functions. Furthermore, we provide a statistical testing power analysis of our proposed framework. Experiment results on synthetic and real datasets demonstrate the superior performance of our approach.

For a positive integer $k$, a proper $k$-coloring of a graph $G$ is a mapping $f: V(G) \rightarrow \{1,2, \ldots, k\}$ such that $f(u) \neq f(v)$ for each edge $uv$ of $G$. The smallest integer $k$ for which there is a proper $k$-coloring of $G$ is called the chromatic number of $G$, denoted by $\chi(G)$. A locally identifying coloring (for short, lid-coloring) of a graph $G$ is a proper $k$-coloring of $G$ such that every pair of adjacent vertices with distinct closed neighborhoods has distinct set of colors in their closed neighborhoods. The smallest integer $k$ such that $G$ has a lid-coloring with $k$ colors is called locally identifying chromatic number (for short, lid-chromatic number) of $G$, denoted by $\chi_{lid}(G)$. This paper studies the lid-coloring of the Cartesian product and tensor product of two graphs. We prove that if $G$ and $H$ are two connected graphs having at least two vertices then (a) $\chi_{lid}(G \square H) \leq \chi(G) \chi(H)-1$ and (b) $\chi_{lid}(G \times H) \leq \chi(G) \chi(H)$. Here $G \square H$ and $G \times H$ denote the Cartesian and tensor products of $G$ and $H$ respectively. We determine the lid-chromatic number of $C_m \square P_n$, $C_m \square C_n$, $P_m \times P_n$, $C_m \times P_n$ and $C_m \times C_n$, where $C_m$ and $P_n$ denote a cycle and a path on $m$ and $n$ vertices respectively.

Matrix-variate distributions are a recent addition to the model-based clustering field, thereby making it possible to analyze data in matrix form with complex structure such as images and time series. Due to its recent appearance, there is limited literature on matrix-variate data, with even less on dealing with outliers in these models. An approach for clustering matrix-variate normal data with outliers is discussed. The approach, which uses the distribution of subset log-likelihoods, extends the OCLUST algorithm to matrix-variate normal data and uses an iterative approach to detect and trim outliers.

Sparse Candecomp / PARAFAC decomposition, a generalization of the matrix singular value decomposition to higher-dimensional tensors, is a popular tool for analyzing diverse datasets. On tensors with billions of nonzero entries, computing a CP decomposition is a computationally intensive task. We propose the first distributed-memory implementations of two randomized CP decomposition algorithms, CP-ARLS-LEV and STS-CP, that offer nearly an order-of-magnitude speedup at high decomposition ranks over well-tuned non-randomized decomposition packages. Both algorithms rely on leverage score sampling and enjoy strong theoretical guarantees, each with varying time and accuracy tradeoffs. We tailor the communication schedule for our random sampling algorithms, eliminating expensive reduction collectives and forcing communication costs to scale with the random sample count. Finally, we optimize the local storage format for our methods, switching between an analogue of compressed sparse column and compressed sparse row formats to facilitate both random sampling and efficient parallelization of sparse-dense matrix multiplication. Experiments show that our methods are fast and scalable, producing 11x speedup over SPLATT to compute a decomposition of the billion-scale Reddit tensor on 512 CPU cores in under 2 minutes.

We introduce Clifford Group Equivariant Neural Networks: a novel approach for constructing $\mathrm{O}(n)$- and $\mathrm{E}(n)$-equivariant models. We identify and study the $\textit{Clifford group}$, a subgroup inside the Clifford algebra whose definition we adjust to achieve several favorable properties. Primarily, the group's action forms an orthogonal automorphism that extends beyond the typical vector space to the entire Clifford algebra while respecting the multivector grading. This leads to several non-equivalent subrepresentations corresponding to the multivector decomposition. Furthermore, we prove that the action respects not just the vector space structure of the Clifford algebra but also its multiplicative structure, i.e., the geometric product. These findings imply that every polynomial in multivectors, An advantage worth mentioning is that we obtain expressive layers that can elegantly generalize to inner-product spaces of any dimension. We demonstrate, notably from a single core implementation, state-of-the-art performance on several distinct tasks, including a three-dimensional $n$-body experiment, a four-dimensional Lorentz-equivariant high-energy physics experiment, and a five-dimensional convex hull experiment.

Subset Sum Ratio is the following optimization problem: Given a set of $n$ positive numbers $I$, find disjoint subsets $X,Y \subseteq I$ minimizing the ratio $\max\{\Sigma(X)/\Sigma(Y),\Sigma(Y)/\Sigma(X)\}$, where $\Sigma(Z)$ denotes the sum of all elements of $Z$. Subset Sum Ratio is an optimization variant of the Equal Subset Sum problem. It was introduced by Woeginger and Yu in '92 and is known to admit an FPTAS [Bazgan, Santha, Tuza '98]. The best approximation schemes before this work had running time $O(n^4/\varepsilon)$ [Melissinos, Pagourtzis '18], $\tilde O(n^{2.3}/\varepsilon^{2.6})$ and $\tilde O(n^2/\varepsilon^3)$ [Alonistiotis et al. '22]. In this work, we present an improved approximation scheme for Subset Sum Ratio running in time $O(n / \varepsilon^{0.9386})$. Here we assume that the items are given in sorted order, otherwise we need an additional running time of $O(n \log n)$ for sorting. Our improved running time simultaneously improves the dependence on $n$ to linear and the dependence on $1/\varepsilon$ to sublinear. For comparison, the related Subset Sum problem admits an approximation scheme running in time $O(n/\varepsilon)$ [Gens, Levner '79]. If one would achieve an approximation scheme with running time $\tilde O(n / \varepsilon^{0.99})$ for Subset Sum, then one would falsify the Strong Exponential Time Hypothesis [Abboud, Bringmann, Hermelin, Shabtay '19] as well as the Min-Plus-Convolution Hypothesis [Bringmann, Nakos '21]. We thus establish that Subset Sum Ratio admits faster approximation schemes than Subset Sum. This comes as a surprise, since at any point in time before this work the best known approximation scheme for Subset Sum Ratio had a worse running time than the best known approximation scheme for Subset Sum.

Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.

北京阿比特科技有限公司