亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

High-dimensional functional data has become increasingly prevalent in modern applications such as high-frequency financial data and neuroimaging data analysis. We investigate a class of high-dimensional linear regression models, where each predictor is a random element in an infinite dimensional function space, and the number of functional predictors p can potentially be much greater than the sample size n. Assuming that each of the unknown coefficient functions belongs to some reproducing kernel Hilbert space (RKHS), we regularized the fitting of the model by imposing a group elastic-net type of penalty on the RKHS norms of the coefficient functions. We show that our loss function is Gateaux sub-differentiable, and our functional elastic-net estimator exists uniquely in the product RKHS. Under suitable sparsity assumptions and a functional version of the irrepresentible condition, we establish the variable selection consistency property of our approach. The proposed method is illustrated through simulation studies and a real-data application from the Human Connectome Project.

相關內容

Decentralised learning has recently gained traction as an alternative to federated learning in which both data and coordination are distributed over its users. To preserve the confidentiality of users' data, decentralised learning relies on differential privacy, multi-party computation, or a combination thereof. However, running multiple privacy-preserving summations in sequence may allow adversaries to perform reconstruction attacks. Unfortunately, current reconstruction countermeasures either cannot trivially be adapted to the distributed setting, or add excessive amounts of noise. In this work, we first show that passive honest-but-curious adversaries can reconstruct other users' private data after several privacy-preserving summations. For example, in subgraphs with 18 users, we show that only three passive honest-but-curious adversaries succeed at reconstructing private data 11.0% of the time, requiring an average of 8.8 summations per adversary. The success rate is independent of the size of the full network. We consider weak adversaries, who do not control the graph topology and can exploit neither the workings of the summation protocol nor the specifics of users' data. We develop a mathematical understanding of how reconstruction relates to topology and propose the first topology-based decentralised defence against reconstruction attacks. Specifically, we show that reconstruction requires a number of adversaries linear in the length of the network's shortest cycle. Consequently, reconstructing private data from privacy-preserving summations is impossible in acyclic networks. Our work is a stepping stone for a formal theory of decentralised reconstruction defences based on topology. Such a theory would generalise our countermeasure beyond summation, define confidentiality in terms of entropy, and describe the effects of (topology-aware) differential privacy.

This paper introduces a theory for assessing and optimizing the multiple-input-multiple-output performance of multi-port cluster antennas in terms of efficiency, channel correlation, and power distribution. A method based on a convex optimization of feeding coefficients is extended with additional constraints allowing the user to control a ratio between the power radiated by the clusters. The formulation of the problem makes it possible to simultaneously optimize total efficiency and channel correlation with a fixed ratio between power radiated by the clusters, thus examining a trade-off between these parameters. It is shown that channel correlation, total efficiency, and allocation of radiated power are mutually conflicting parameters. The trade-offs are shown and discussed. The theory is demonstrated on a four-element antenna array and on a mobile terminal antenna.

Recent work has shown that energy-based language modeling is an effective framework for controllable text generation because it enables flexible integration of arbitrary discriminators. However, because energy-based LMs are globally normalized, approximate techniques like Metropolis-Hastings (MH) are required for inference. Past work has largely explored simple proposal distributions that modify a single token at a time, like in Gibbs sampling. In this paper, we develop a novel MH sampler that, in contrast, proposes re-writes of the entire sequence in each step via iterative prompting of a large language model. Our new sampler (a) allows for more efficient and accurate sampling from a target distribution and (b) allows generation length to be determined through the sampling procedure rather than fixed in advance, as past work has required. We perform experiments on two controlled generation tasks, showing both downstream performance gains and more accurate target distribution sampling in comparison with single-token proposal techniques.

This study performs BERT-based analysis, which is a representative contextualized language model, on corporate disclosure data to predict impending bankruptcies. Prior literature on bankruptcy prediction mainly focuses on developing more sophisticated prediction methodologies with financial variables. However, in our study, we focus on improving the quality of input dataset. Specifically, we employ BERT model to perform sentiment analysis on MD&A disclosures. We show that BERT outperforms dictionary-based predictions and Word2Vec-based predictions in terms of adjusted R-square in logistic regression, k-nearest neighbor (kNN-5), and linear kernel support vector machine (SVM). Further, instead of pre-training the BERT model from scratch, we apply self-learning with confidence-based filtering to corporate disclosure data (10-K). We achieve the accuracy rate of 91.56% and demonstrate that the domain adaptation procedure brings a significant improvement in prediction accuracy.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司