亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given data ${\rm X}\in\mathbb{R}^{n\times d}$ and labels $\mathbf{y}\in\mathbb{R}^{n}$ the goal is find $\mathbf{w}\in\mathbb{R}^d$ to minimize $\Vert{\rm X}\mathbf{w}-\mathbf{y}\Vert^2$. We give a polynomial algorithm that, \emph{oblivious to $\mathbf{y}$}, throws out $n/(d+\sqrt{n})$ data points and is a $(1+d/n)$-approximation to optimal in expectation. The motivation is tight approximation with reduced label complexity (number of labels revealed). We reduce label complexity by $\Omega(\sqrt{n})$. Open question: Can label complexity be reduced by $\Omega(n)$ with tight $(1+d/n)$-approximation?

相關內容

In this paper, we investigate computational power of threshold circuits and other theoretical models of neural networks in terms of the following four complexity measures: size (the number of gates), depth, weight and energy. Here the energy complexity of a circuit measures sparsity of their computation, and is defined as the maximum number of gates outputting non-zero values taken over all the input assignments. As our main result, we prove that any threshold circuit $C$ of size $s$, depth $d$, energy $e$ and weight $w$ satisfies $\log (rk(M_C)) \le ed (\log s + \log w + \log n)$, where $rk(M_C)$ is the rank of the communication matrix $M_C$ of a $2n$-variable Boolean function that $C$ computes. Thus, such a threshold circuit $C$ is able to compute only a Boolean function of which communication matrix has rank bounded by a product of logarithmic factors of $s,w$ and linear factors of $d,e$. This implies an exponential lower bound on the size of even sublinear-depth threshold circuit if energy and weight are sufficiently small. For other models of neural networks such as a discretized ReLE circuits and decretized sigmoid circuits, we prove that a similar inequality also holds for a discretized circuit $C$: $rk(M_C) = O(ed(\log s + \log w + \log n)^3)$.

In this work we present a non-parametric online market regime detection method for multidimensional data structures using a path-wise two-sample test derived from a maximum mean discrepancy-based similarity metric on path space that uses rough path signatures as a feature map. The latter similarity metric has been developed and applied as a discriminator in recent generative models for small data environments, and has been optimised here to the setting where the size of new incoming data is particularly small, for faster reactivity. On the same principles, we also present a path-wise method for regime clustering which extends our previous work. The presented regime clustering techniques were designed as ex-ante market analysis tools that can identify periods of approximatively similar market activity, but the new results also apply to path-wise, high dimensional-, and to non-Markovian settings as well as to data structures that exhibit autocorrelation. We demonstrate our clustering tools on easily verifiable synthetic datasets of increasing complexity, and also show how the outlined regime detection techniques can be used as fast on-line automatic regime change detectors or as outlier detection tools, including a fully automated pipeline. Finally, we apply the fine-tuned algorithms to real-world historical data including high-dimensional baskets of equities and the recent price evolution of crypto assets, and we show that our methodology swiftly and accurately indicated historical periods of market turmoil.

We study the weak recovery problem on the $r$-uniform hypergraph stochastic block model ($r$-HSBM) with two balanced communities. In HSBM a random graph is constructed by placing hyperedges with higher density if all vertices of a hyperedge share the same binary label, and weak recovery asks to recover a non-trivial fraction of the labels. We introduce a multi-terminal version of strong data processing inequalities (SDPIs), which we call the multi-terminal SDPI, and use it to prove a variety of impossibility results for weak recovery. In particular, we prove that weak recovery is impossible below the Kesten-Stigum (KS) threshold if $r=3,4$, or a strength parameter $\lambda$ is at least $\frac 15$. Prior work Pal and Zhu (2021) established that weak recovery in HSBM is always possible above the KS threshold. Consequently, there is no information-computation gap for these cases, which (partially) resolves a conjecture of Angelini et al. (2015). To our knowledge this is the first impossibility result for HSBM weak recovery. As usual, we reduce the study of non-recovery of HSBM to the study of non-reconstruction in a related broadcasting on hypertrees (BOHT) model. While we show that BOHT's reconstruction threshold coincides with KS for $r=3,4$, surprisingly, we demonstrate that for $r\ge 7$ reconstruction is possible also below KS. This shows an interesting phase transition in the parameter $r$, and suggests that for $r\ge 7$, there might be an information-computation gap for the HSBM. For $r=5,6$ and large degree we propose an approach for showing non-reconstruction below KS, suggesting that $r=7$ is the correct threshold for onset of the new phase.

Existing theories on deep nonparametric regression have shown that when the input data lie on a low-dimensional manifold, deep neural networks can adapt to the intrinsic data structures. In real world applications, such an assumption of data lying exactly on a low dimensional manifold is stringent. This paper introduces a relaxed assumption that the input data are concentrated around a subset of $\mathbb{R}^d$ denoted by $\mathcal{S}$, and the intrinsic dimension of $\mathcal{S}$ can be characterized by a new complexity notation -- effective Minkowski dimension. We prove that, the sample complexity of deep nonparametric regression only depends on the effective Minkowski dimension of $\mathcal{S}$ denoted by $p$. We further illustrate our theoretical findings by considering nonparametric regression with an anisotropic Gaussian random design $N(0,\Sigma)$, where $\Sigma$ is full rank. When the eigenvalues of $\Sigma$ have an exponential or polynomial decay, the effective Minkowski dimension of such an Gaussian random design is $p=\mathcal{O}(\sqrt{\log n})$ or $p=\mathcal{O}(n^\gamma)$, respectively, where $n$ is the sample size and $\gamma\in(0,1)$ is a small constant depending on the polynomial decay rate. Our theory shows that, when the manifold assumption does not hold, deep neural networks can still adapt to the effective Minkowski dimension of the data, and circumvent the curse of the ambient dimensionality for moderate sample sizes.

We consider the classical problem of heteroscedastic linear regression, where we are given $n$ samples $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ obtained from $y_i = \langle \mathbf{w}^{*}, \mathbf{x}_i \rangle + \epsilon_i \cdot \langle \mathbf{f}^{*}, \mathbf{x}_i \rangle$, where $\mathbf{x}_i \sim N(0,\mathbf{I})$, $\epsilon_i \sim N(0,1)$, and our task is to estimate $\mathbf{w}^{*}$. In addition to the classical applications of heteroscedastic models in fields such as statistics, econometrics, time series analysis etc., it is also particularly relevant in machine learning when data is collected from multiple sources of varying but apriori unknown quality, e.g., large model training. Our work shows that we can estimate $\mathbf{w}^{*}$ in squared norm up to an error of $\tilde{O}\left(\|\mathbf{f}^{*}\|^2 \cdot \left(\frac{1}{n} + \left(\frac{d}{n}\right)^2\right)\right)$ and prove a matching lower bound (up to logarithmic factors). Our result substantially improves upon the previous best known upper bound of $\tilde{O}\left(\|\mathbf{f}^{*}\|^2\cdot \frac{d}{n}\right)$. Our upper bound result is based on a novel analysis of a simple, classical heuristic going back to at least Davidian and Carroll (1987) and constitutes the first non-asymptotic convergence guarantee for this approach. As a byproduct, our analysis also provides improved rates of estimation for both linear regression and phase retrieval with multiplicative noise, which maybe of independent interest. The lower bound result relies on a careful application of LeCam's two point method, adapted to work with heavy tailed random variables where the relevant mutual information quantities are infinite (precluding a direct application of LeCam's method), and could also be of broader interest.

We consider a problem of approximation of $d$-variate functions defined on $\mathbb{R}^d$ which belong to the Hilbert space with tensor product-type reproducing Gaussian kernel with constant shape parameter. Within worst case setting, we investigate the growth of the information complexity as $d\to\infty$. The asymptotics are obtained for the case of fixed error threshold and for the case when it goes to zero as $d\to\infty$.

We derive optimality conditions for the optimum sample allocation problem, formulated as the determination of the fixed strata sample sizes that minimize the total cost of the survey, under assumed level of the variance of the stratified estimator and one-sided upper bounds imposed on sample sizes in strata. In this context, we take that the variance function is of some generic form that involves the stratified $\pi$ estimator of the population total with stratified simple random sampling without replacement design as a special case. The optimality conditions mentioned above will be derived with the use of convex optimization theory and the Karush-Kuhn-Tucker conditions. Based on the established optimality conditions we give a formal proof of the existing procedure, termed here as LRNA, that solves the allocation problem considered. We formulate the LRNA in such a way that it also provides the solution to classical optimum allocation problem (i.e. minimization of the estimator's variance under fixed total cost) under one-sided lower bounds imposed on sample sizes in strata. From this standpoint, the LRNA can be considered as a counterparty to the popular recursive Neyman allocation procedure that is used to solve the classical problem of optimum sample allocation but with one-sided upper bounds. Ready-to-use R-implementation of the LRNA is available through our package stratallo, which is published on the Comprehensive R Archive Network (CRAN) package repository.

We study the randomized $n$-th minimal errors (and hence the complexity) of vector valued approximation. In a recent paper by the author [Randomized complexity of parametric integration and the role of adaption I. Finite dimensional case (preprint)] a long-standing problem of Information-Based Complexity was solved: Is there a constant $c>0$ such that for all linear problems $\mathcal{P}$ the randomized non-adaptive and adaptive $n$-th minimal errors can deviate at most by a factor of $c$? That is, does the following hold for all linear $\mathcal{P}$ and $n\in {\mathbb N}$ \begin{equation*} e_n^{\rm ran-non} (\mathcal{P})\le ce_n^{\rm ran} (\mathcal{P}) \, {\bf ?} \end{equation*} The analysis of vector-valued mean computation showed that the answer is negative. More precisely, there are instances of this problem where the gap between non-adaptive and adaptive randomized minimal errors can be (up to log factors) of the order $n^{1/8}$. This raises the question about the maximal possible deviation. In this paper we show that for certain instances of vector valued approximation the gap is $n^{1/2}$ (again, up to log factors).

We study the complexity of randomized computation of integrals depending on a parameter, with integrands from Sobolev spaces. That is, for $r,d_1,d_2\in{\mathbb N}$, $1\le p,q\le \infty$, $D_1= [0,1]^{d_1}$, and $D_2= [0,1]^{d_2}$ we are given $f\in W_p^r(D_1\times D_2)$ and we seek to approximate $$ Sf=\int_{D_2}f(s,t)dt\quad (s\in D_1), $$ with error measured in the $L_q(D_1)$-norm. Our results extend previous work of Heinrich and Sindambiwe (J.\ Complexity, 15 (1999), 317--341) for $p=q=\infty$ and Wiegand (Shaker Verlag, 2006) for $1\le p=q<\infty$. Wiegand's analysis was carried out under the assumption that $W_p^r(D_1\times D_2)$ is continuously embedded in $C(D_1\times D_2)$ (embedding condition). We also study the case that the embedding condition does not hold. For this purpose a new ingredient is developed -- a stochastic discretization technique. The paper is based on Part I, where vector valued mean computation -- the finite-dimensional counterpart of parametric integration -- was studied. In Part I a basic problem of Information-Based Complexity on the power of adaption for linear problems in the randomized setting was solved. Here a further aspect of this problem is settled.

We study the asymptotic generalization of an overparameterized linear model for multiclass classification under the Gaussian covariates bi-level model introduced in Subramanian et al.~'22, where the number of data points, features, and classes all grow together. We fully resolve the conjecture posed in Subramanian et al.~'22, matching the predicted regimes for generalization. Furthermore, our new lower bounds are akin to an information-theoretic strong converse: they establish that the misclassification rate goes to 0 or 1 asymptotically. One surprising consequence of our tight results is that the min-norm interpolating classifier can be asymptotically suboptimal relative to noninterpolating classifiers in the regime where the min-norm interpolating regressor is known to be optimal. The key to our tight analysis is a new variant of the Hanson-Wright inequality which is broadly useful for multiclass problems with sparse labels. As an application, we show that the same type of analysis can be used to analyze the related multilabel classification problem under the same bi-level ensemble.

北京阿比特科技有限公司