亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Computerization has created a digital ecological niche where humans live in a state of interconnection that modifies their Epigenetics. Within this hyper-datafied virtual space, the logged-in agent enhances their intellectual and rational abilities, giving rise to a new cognitive entity. Humans are evolving towards a new anthropological status that shifts the terms of the Digital History debate from History to the historian, compelling the latter to reflect on the positions of Fichte and Schelling regarding the mind-body-world relationship (ecological niche). This reflection leads to the possibility of overcoming the crisis of History imposed by presentism and the necessity of redefining the research methodology based on the new vision of the interconnection between the mind and the digital niche as an investigative tool.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認(ren)知:國(guo)際認(ren)知科學雜(za)志。 Publisher:Elsevier。 SIT:

Graph convolutional networks and their variants have shown significant promise in 3D human pose estimation. Despite their success, most of these methods only consider spatial correlations between body joints and do not take into account temporal correlations, thereby limiting their ability to capture relationships in the presence of occlusions and inherent ambiguity. To address this potential weakness, we propose a spatio-temporal network architecture composed of a joint-mixing multi-layer perceptron block that facilitates communication among different joints and a graph weighted Jacobi network block that enables communication among various feature channels. The major novelty of our approach lies in a new weighted Jacobi feature propagation rule obtained through graph filtering with implicit fairing. We leverage temporal information from the 2D pose sequences, and integrate weight modulation into the model to enable untangling of the feature transformations of distinct nodes. We also employ adjacency modulation with the aim of learning meaningful correlations beyond defined linkages between body joints by altering the graph topology through a learnable modulation matrix. Extensive experiments on two benchmark datasets demonstrate the effectiveness of our model, outperforming recent state-of-the-art methods for 3D human pose estimation.

Over the past decades, cognitive neuroscientists and behavioral economists have recognized the value of describing the process of decision making in detail and modeling the emergence of decisions over time. For example, the time it takes to decide can reveal more about an agents true hidden preferences than only the decision itself. Similarly, data that track the ongoing decision process such as eye movements or neural recordings contain critical information that can be exploited, even if no decision is made. Here, we argue that artificial intelligence (AI) research would benefit from a stronger focus on insights about how decisions emerge over time and incorporate related process data to improve AI predictions in general and human-AI interactions in particular. First, we introduce a highly established computational framework that assumes decisions to emerge from the noisy accumulation of evidence, and we present related empirical work in psychology, neuroscience, and economics. Next, we discuss to what extent current approaches in multi-agent AI do or do not incorporate process data and models of decision making. Finally, we outline how a more principled inclusion of the evidence-accumulation framework into the training and use of AI can help to improve human-AI interactions in the future.

Asymptotic separation index is a parameter that measures how easily a Borel graph can be approximated by its subgraphs with finite components. In contrast to the more classical notion of hyperfiniteness, asymptotic separation index is well-suited for combinatorial applications in the Borel setting. The main result of this paper is a Borel version of the Lov\'asz Local Lemma -- a powerful general-purpose tool in probabilistic combinatorics -- under a finite asymptotic separation index assumption. As a consequence, we show that locally checkable labeling problems that are solvable by efficient randomized distributed algorithms admit Borel solutions on bounded degree Borel graphs with finite asymptotic separation index. From this we derive a number of corollaries, for example a Borel version of Brooks's theorem for graphs with finite asymptotic separation index.

Conjugate gradient is an efficient algorithm for solving large sparse linear systems. It has been utilized to accelerate the computation in Bayesian analysis for many large-scale problems. This article discusses the applications of conjugate gradient in Bayesian computation, with a focus on sparse regression and spatial analysis. A self-contained introduction of conjugate gradient is provided to facilitate potential applications in a broader range of problems.

Angiography is widely used to detect, diagnose, and treat cerebrovascular diseases. While numerous techniques have been proposed to segment the vascular network from different imaging modalities, deep learning (DL) has emerged as a promising approach. However, existing DL methods often depend on proprietary datasets and extensive manual annotation. Moreover, the availability of pre-trained networks specifically for medical domains and 3D volumes is limited. To overcome these challenges, we propose a few-shot learning approach called VesselShot for cerebrovascular segmentation. VesselShot leverages knowledge from a few annotated support images and mitigates the scarcity of labeled data and the need for extensive annotation in cerebral blood vessel segmentation. We evaluated the performance of VesselShot using the publicly available TubeTK dataset for the segmentation task, achieving a mean Dice coefficient (DC) of 0.62(0.03).

Ethics, or moral philosophy, have existed throughout civil human history. Ethics can be described simplistically as the study of what is good and bad or good and evil. More relevant for contemporary societal discourses, are behavioural understandings of ethics, and ethical practice. It is integral for individuals operating in the fields of communications, design and technological development to grasp what ethics are, how they relate and apply to specific domains, where basic principles or similarities lie from context to context, and where there may be differences. This article serves as an introduction to ethics in the field of digital communication. It gives a brief overview of applied ethics as a practical sub-field of ethics and observes ethics in contemporary professional practice from practical, research, and theoretical perspectives.The article also discusses the ways in which the nature of ethics in the field of communication has been changing, and the impact of emerging technology on these changes.

We study a class of Gaussian processes for which the posterior mean, for a particular choice of data, replicates a truncated Taylor expansion of any order. The data consist of derivative evaluations at the expansion point and the prior covariance kernel belongs to the class of Taylor kernels, which can be written in a certain power series form. We discuss and prove some results on maximum likelihood estimation of parameters of Taylor kernels. The proposed framework is a special case of Gaussian process regression based on data that is orthogonal in the reproducing kernel Hilbert space of the covariance kernel.

We consider finite-dimensional Bayesian linear inverse problems with Gaussian priors and additive Gaussian noise models. The goal of this note is to present a simple derivation of the well-known fact that solving the Bayesian D-optimal experimental design problem, i.e., maximizing the expected information gain, is equivalent to minimizing the log-determinant of posterior covariance operator. We focus on finite-dimensional inverse problems. However, the presentation is kept generic to facilitate extensions to infinite-dimensional inverse problems.

Advances in survival analysis have facilitated unprecedented flexibility in data modeling, yet there remains a lack of tools for graphically illustrating the influence of continuous covariates on predicted survival outcomes. We propose the utilization of a colored contour plot to depict the predicted survival probabilities over time, and provide a Shiny app and R package as implementations of this tool. Our approach is capable of supporting conventional models, including the Cox and Fine-Gray models. However, its capability shines when coupled with cutting-edge machine learning models such as deep neural networks.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

北京阿比特科技有限公司