亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents non-binary polar codes for the two-user multiple-access channel (MAC). The bit error rate (BER) performances of the non-binary polar codes with different kernel factors have been investigated in detail to select a proper parameter from GF(q) for the generator matrix. Furthermore, the successive cancellation decoding for the non-binary polar codes in the two-user MAC is introduced in detail. Simulation results show that the choice of the kernel factors has a significant impact on the block error rate (BLER) performance; moreover, the non-binary polar codes provide a better BLER performance than their binary counterpart in the two-user MAC.

相關內容

A joint sparse-regression-code (SPARC) and low-density-parity-check (LDPC) coding scheme for multiple-input multiple-output (MIMO) massive unsourced random access (URA) is proposed in this paper. Different from the state-of-the-art covariance-based maximum likelihood (CB-ML) detection scheme, we first split users' messages into two parts. The former part is encoded by SPARCs and tasked to recover part of the messages, the corresponding channel coefficients as well as the interleaving patterns by compressed sensing. The latter part is coded by LDPC codes and then interleaved by the interleave-division multiple access (IDMA) scheme. The decoding of the latter part is based on belief propagation (BP) joint with successive interference cancellation (SIC). Numerical results show our scheme outperforms the CB-ML scheme when the number of antennas at the base station is smaller than that of active users. The complexity of our scheme is with the order $\mathcal{O}\left(2^{B_p}ML+\widehat{K}ML\right)$ and lower than the CB-ML scheme. Moreover, our scheme has higher spectral efficiency (nearly $15$ times larger) than CB-ML as we only split messages into two parts.

In this paper, we discuss two-stage encoding algorithms capable of correcting a fraction of asymmetric errors. Suppose that the encoder transmits $n$ binary symbols $(x_1,\ldots,x_n)$ one-by-one over the Z-channel, in which a 1 is received only if a 1 is transmitted. At some designated moment, say $n_1$, the encoder uses noiseless feedback and adjusts further encoding strategy based on the partial output of the channel $(y_1,\ldots,y_{n_1})$. The goal is to transmit error-free as much information as possible under the assumption that the total number of errors inflicted by the Z-channel is limited by $\tau n$, $0<\tau<1$. We propose an encoding strategy that uses a list-decodable code at the first stage and a high-error low-rate code at the second stage. This strategy and our converse result yield that there is a sharp transition at $\tau=\max\limits_{0<w<1}\frac{w + w^3}{1+4w^3}\approx 0.44$ from positive rate to zero rate for two-stage encoding strategies. As side results, we derive bounds on the size of list-decodable codes for the Z-channel and prove that for a fraction $1/4+\epsilon$ of asymmetric errors, an error-correcting code contains at most $O(\epsilon^{-3/2})$ codewords.

We study the problem of retrieving data from a channel that breaks the input sequence into a set of unordered fragments of random lengths, which we refer to as the chop-and-shuffle channel. The length of each fragment follows a geometric distribution. We propose nested Varshamov-Tenengolts (VT) codes to recover the data. We evaluate the error rate and the complexity of our scheme numerically. Our results show that the decoding error decreases as the input length increases, and our method has a significantly lower complexity than the baseline brute-force approach. We also propose a new construction for VT codes, quantify the maximum number of the required parity bits, and show that our approach requires fewer parity bits compared to known results.

Rate-splitting multiple access (RSMA) has emerged as a novel, general, and powerful framework for the design and optimization of non-orthogonal transmission, multiple access (MA), and interference management strategies for future wireless networks. Through information and communication theoretic analysis, RSMA has been shown to be optimal (from a Degrees-of-Freedom region perspective) in several transmission scenarios. Compared to the conventional MA strategies used in 5G, RSMA enables spectral efficiency (SE), energy efficiency (EE), coverage, user fairness, reliability, and quality of service (QoS) enhancements for a wide range of network loads (including both underloaded and overloaded regimes) and user channel conditions. Furthermore, it enjoys a higher robustness against imperfect channel state information at the transmitter (CSIT) and entails lower feedback overhead and complexity. Despite its great potential to fundamentally change the physical (PHY) layer and media access control (MAC) layer of wireless communication networks, RSMA is still confronted with many challenges on the road towards standardization. In this paper, we present the first comprehensive overview on RSMA by providing a survey of the pertinent state-of-the-art research, detailing its architecture, taxonomy, and various appealing applications, as well as comparing with existing MA schemes in terms of their overall frameworks, performance, and complexities. An in-depth discussion of future RSMA research challenges is also provided to inspire future research on RSMA-aided wireless communication for beyond 5G systems.

We consider in this paper a new intelligent reflecting surface (IRS)-aided LEO satellite communication system, by utilizing the controllable phase shifts of massive passive reflecting elements to achieve flexible beamforming, which copes with the time-varying channel between the high-mobility satellite (SAT) and ground node (GN) cost-effectively. In particular, we propose a new architecture for IRS-aided LEO satellite communication where IRSs are deployed at both sides of the SAT and GN, and study their cooperative passive beamforming (CPB) design over line-of-sight (LoS)-dominant single-reflection and double-reflection channels. Specifically, we jointly optimize the active transmit/receive beamforming at the SAT/GN as well as the CPB at two-sided IRSs to maximize the overall channel gain from the SAT to each GN. Interestingly, we show that under LoS channel conditions, the high-dimensional SAT-GN channel can be decomposed into the outer product of two low-dimensional vectors. By exploiting the decomposed SAT-GN channel, we decouple the original beamforming optimization problem into two simpler subproblems corresponding to the SAT and GN sides, respectively, which are both solved in closed-form. Furthermore, we propose an efficient transmission protocol to conduct channel estimation and beam tracking, which only requires independent processing of the SAT and GN in a distributed manner, thus substantially reducing the implementation complexity. Simulation results validate the performance advantages of the proposed IRS-aided LEO satellite communication system with two-sided cooperative IRSs, as compared to various baseline schemes such as the conventional reflect-array and one-sided IRS.

This paper investigates the massive connectivity of low Earth orbit (LEO) satellite-based Internet-of-Things (IoT) for seamless global coverage. We propose to integrate the grant-free non-orthogonal multiple access (GF-NOMA) paradigm with the emerging orthogonal time frequency space (OTFS) modulation to accommodate the massive IoT access, and mitigate the long round-trip latency and severe Doppler effect of terrestrial-satellite links (TSLs). On this basis, we put forward a two-stage successive active terminal identification (ATI) and channel estimation (CE) scheme as well as a low-complexity multi-user signal detection (SD) method. Specifically, at the first stage, the proposed training sequence aided OTFS (TS-OTFS) data frame structure facilitates the joint ATI and coarse CE, whereby both the traffic sparsity of terrestrial IoT terminals and the sparse channel impulse response are leveraged for enhanced performance. Moreover, based on the single Doppler shift property for each TSL and sparsity of delay-Doppler domain channel, we develop a parametric approach to further refine the CE performance. Finally, a least square based parallel time domain SD method is developed to detect the OTFS signals with relatively low complexity. Simulation results demonstrate the superiority of the proposed methods over the state-of-the-art solutions in terms of ATI, CE, and SD performance confronted with the long round-trip latency and severe Doppler effect.

Finding different solutions to the same problem is a key aspect of intelligence associated with creativity and adaptation to novel situations. In reinforcement learning, a set of diverse policies can be useful for exploration, transfer, hierarchy, and robustness. We propose Diverse Successive Policies, a method for discovering policies that are diverse in the space of Successor Features, while assuring that they are near optimal. We formalize the problem as a Constrained Markov Decision Process (CMDP) where the goal is to find policies that maximize diversity, characterized by an intrinsic diversity reward, while remaining near-optimal with respect to the extrinsic reward of the MDP. We also analyze how recently proposed robustness and discrimination rewards perform and find that they are sensitive to the initialization of the procedure and may converge to sub-optimal solutions. To alleviate this, we propose new explicit diversity rewards that aim to minimize the correlation between the Successor Features of the policies in the set. We compare the different diversity mechanisms in the DeepMind Control Suite and find that the type of explicit diversity we are proposing is important to discover distinct behavior, like for example different locomotion patterns.

In milimeter wave heterogenous networks with integrated access and backhaul (mABHetNets), a considerable part of spectrum resources are occupied by the backhaul link, which limits the performance of the access link. In order to overcome such backhaul "spectrum occupancy", we introduce cache in mABHetNets. Caching popular files at small base stations (SBSs) can offload the backhaul traffic and transfer spectrum from the backhaul link to the access link. To achieve the optimal performance of the cache-enabled mABHetNets, we first analyze the signal-to-interference-plus-noise ratio (SINR) distribution and derive the average potential throughput (APT) expression by stochastic geometric tools. Then, based on our analytical work, we formulate a joint optimization problem of cache decision and spectrum partition to maximize the APT. Inspired by the block coordinate descent (BCD) method, we propose a joint cache decision, spectrum partition and power allocation (JCSPA) algorithm to find the optimal solution. Simulation results show the convergence and enhancement of the proposed algorithm. Besides, we verify the APT under different parameters and find that the introduction of cache facilitates the transfer of backhaul spectrum to access link. Jointly deploying appropriate caching capacity at SBSs and performing specified spectrum partition can bring up about 90% APT gain in mABHetNets.

Over the past several years, new machine learning accelerators were being announced and released every month for a variety of applications from speech recognition, video object detection, assisted driving, and many data center applications. This paper updates the survey of AI accelerators and processors from past two years. This paper collects and summarizes the current commercial accelerators that have been publicly announced with peak performance and power consumption numbers. The performance and power values are plotted on a scatter graph, and a number of dimensions and observations from the trends on this plot are again discussed and analyzed. This year, we also compile a list of benchmarking performance results and compute the computational efficiency with respect to peak performance.

Policy gradient methods are widely used in reinforcement learning algorithms to search for better policies in the parameterized policy space. They do gradient search in the policy space and are known to converge very slowly. Nesterov developed an accelerated gradient search algorithm for convex optimization problems. This has been recently extended for non-convex and also stochastic optimization. We use Nesterov's acceleration for policy gradient search in the well-known actor-critic algorithm and show the convergence using ODE method. We tested this algorithm on a scheduling problem. Here an incoming job is scheduled into one of the four queues based on the queue lengths. We see from experimental results that algorithm using Nesterov's acceleration has significantly better performance compared to algorithm which do not use acceleration. To the best of our knowledge this is the first time Nesterov's acceleration has been used with actor-critic algorithm.

北京阿比特科技有限公司