In milimeter wave heterogenous networks with integrated access and backhaul (mABHetNets), a considerable part of spectrum resources are occupied by the backhaul link, which limits the performance of the access link. In order to overcome such backhaul "spectrum occupancy", we introduce cache in mABHetNets. Caching popular files at small base stations (SBSs) can offload the backhaul traffic and transfer spectrum from the backhaul link to the access link. To achieve the optimal performance of the cache-enabled mABHetNets, we first analyze the signal-to-interference-plus-noise ratio (SINR) distribution and derive the average potential throughput (APT) expression by stochastic geometric tools. Then, based on our analytical work, we formulate a joint optimization problem of cache decision and spectrum partition to maximize the APT. Inspired by the block coordinate descent (BCD) method, we propose a joint cache decision, spectrum partition and power allocation (JCSPA) algorithm to find the optimal solution. Simulation results show the convergence and enhancement of the proposed algorithm. Besides, we verify the APT under different parameters and find that the introduction of cache facilitates the transfer of backhaul spectrum to access link. Jointly deploying appropriate caching capacity at SBSs and performing specified spectrum partition can bring up about 90% APT gain in mABHetNets.
This paper leverages recent developments in reinforcement learning and deep learning to solve the supply chain inventory management problem, a complex sequential decision-making problem consisting of determining the optimal quantity of products to produce and ship to different warehouses over a given time horizon. A mathematical formulation of the stochastic two-echelon supply chain environment is given, which allows an arbitrary number of warehouses and product types to be managed. Additionally, an open-source library that interfaces with deep reinforcement learning algorithms is developed and made publicly available for solving the inventory management problem. Performances achieved by state-of-the-art deep reinforcement learning algorithms are compared through a rich set of numerical experiments on synthetically generated data. The experimental plan is designed and performed, including different structures, topologies, demands, capacities, and costs of the supply chain. Results show that the PPO algorithm adapts very well to different characteristics of the environment. The VPG algorithm almost always converges to a local maximum, even if it typically achieves an acceptable performance level. Finally, A3C is the fastest algorithm, but just like the VPG, it never achieves the best performance when compared to PPO. In conclusion, numerical experiments show that deep reinforcement learning performs consistently better than standard inventory management strategies, such as the static (s, Q)-policy. Thus, it can be considered a practical and effective option for solving real-world instances of the stochastic two-echelon supply chain problem.
The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.
The stochastic nature of iterative optimization heuristics leads to inherently noisy performance measurements. Since these measurements are often gathered once and then used repeatedly, the number of collected samples will have a significant impact on the reliability of algorithm comparisons. We show that care should be taken when making decisions based on limited data. Particularly, we show that the number of runs used in many benchmarking studies, e.g., the default value of 15 suggested by the COCO environment, can be insufficient to reliably rank algorithms on well-known numerical optimization benchmarks. Additionally, methods for automated algorithm configuration are sensitive to insufficient sample sizes. This may result in the configurator choosing a `lucky' but poor-performing configuration despite exploring better ones. We show that relying on mean performance values, as many configurators do, can require a large number of runs to provide accurate comparisons between the considered configurations. Common statistical tests can greatly improve the situation in most cases but not always. We show examples of performance losses of more than 20%, even when using statistical races to dynamically adjust the number of runs, as done by irace. Our results underline the importance of appropriately considering the statistical distribution of performance values.
We introduce and analyze various Regularized Combined Field Integral Equations (CFIER) formulations of time-harmonic Navier equations in media with piece-wise constant material properties. These formulations can be derived systematically starting from suitable coercive approximations of Dirichlet-to-Neumann operators (DtN), and we present a periodic pseudodifferential calculus framework within which the well posedness of CIER formulations can be established. We also use the DtN approximations to derive and analyze Optimized Schwarz (OS) methods for the solution of elastodynamics transmission problems. The pseudodifferential calculus we develop in this paper relies on careful singularity splittings of the kernels of Navier boundary integral operators which is also the basis of high-order Nystr\"om quadratures for their discretizations. Based on these high-order discretizations we investigate the rate of convergence of iterative solvers applied to CFIER and OS formulations of scattering and transmission problems. We present a variety of numerical results that illustrate that the CFIER methodology leads to important computational savings over the classical CFIE one, whenever iterative solvers are used for the solution of the ensuing discretized boundary integral equations. Finally, we show that the OS methods are competitive in the high-frequency high-contrast regime.
Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.
Machine learning and computational intelligence technologies gain more and more popularity as possible solution for issues related to the power grid. One of these issues, the power flow calculation, is an iterative method to compute the voltage magnitudes of the power grid's buses from power values. Machine learning and, especially, artificial neural networks were successfully used as surrogates for the power flow calculation. Artificial neural networks highly rely on the quality and size of the training data, but this aspect of the process is apparently often neglected in the works we found. However, since the availability of high quality historical data for power grids is limited, we propose the Correlation Sampling algorithm. We show that this approach is able to cover a larger area of the sampling space compared to different random sampling algorithms from the literature and a copula-based approach, while at the same time inter-dependencies of the inputs are taken into account, which, from the other algorithms, only the copula-based approach does.
This paper studies the application of reconfigurable intelligent surface (RIS) to cooperative non-orthogonal multiple access (C-NOMA) networks with simultaneous wireless information and power transfer (SWIPT). We aim for maximizing the rate of the strong user with guaranteed weak user's quality of service (QoS) by jointly optimizing power splitting factors, beamforming coefficients, and RIS reflection coefficients in two transmission phases. The formulated problem is difficult to solve due to its complex and non-convex constraints. To tackle this challenging problem, we first use alternating optimization (AO) framework to transform it into three subproblems, and then use the penalty-based arithmetic-geometric mean approximation (PBAGM) algorithm and the successive convex approximation (SCA)-based method to solve them. Numerical results verify the superiority of the proposed algorithm over the baseline schemes.
This manuscript gives a theoretical framework for a new Hilbert space of functions, the so called occupation kernel Hilbert space (OKHS), that operate on collections of signals rather than real or complex numbers. To support this new definition, an explicit class of OKHSs is given through the consideration of a reproducing kernel Hilbert space (RKHS). This space enables the definition of nonlocal operators, such as fractional order Liouville operators, as well as spectral decomposition methods for corresponding fractional order dynamical systems. In this manuscript, a fractional order DMD routine is presented, and the details of the finite rank representations are given. Significantly, despite the added theoretical content through the OKHS formulation, the resultant computations only differ slightly from that of occupation kernel DMD methods for integer order systems posed over RKHSs.
This paper studies how well generative adversarial networks (GANs) learn probability distributions from finite samples. Our main results establish the convergence rates of GANs under a collection of integral probability metrics defined through H\"older classes, including the Wasserstein distance as a special case. We also show that GANs are able to adaptively learn data distributions with low-dimensional structures or have H\"older densities, when the network architectures are chosen properly. In particular, for distributions concentrated around a low-dimensional set, we show that the learning rates of GANs do not depend on the high ambient dimension, but on the lower intrinsic dimension. Our analysis is based on a new oracle inequality decomposing the estimation error into the generator and discriminator approximation error and the statistical error, which may be of independent interest.
Speech impairments due to cerebral lesions and degenerative disorders can be devastating. For humans with severe speech deficits, imagined speech in the brain-computer interface has been a promising hope for reconstructing the neural signals of speech production. However, studies in the EEG-based imagined speech domain still have some limitations due to high variability in spatial and temporal information and low signal-to-noise ratio. In this paper, we investigated the neural signals for two groups of native speakers with two tasks with different languages, English and Chinese. Our assumption was that English, a non-tonal and phonogram-based language, would have spectral differences in neural computation compared to Chinese, a tonal and ideogram-based language. The results showed the significant difference in the relative power spectral density between English and Chinese in specific frequency band groups. Also, the spatial evaluation of Chinese native speakers in the theta band was distinctive during the imagination task. Hence, this paper would suggest the key spectral and spatial information of word imagination with specialized language while decoding the neural signals of speech.