亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

3D facial avatar reconstruction has been a significant research topic in computer graphics and computer vision, where photo-realistic rendering and flexible controls over poses and expressions are necessary for many related applications. Recently, its performance has been greatly improved with the development of neural radiance fields (NeRF). However, most existing NeRF-based facial avatars focus on subject-specific reconstruction and reenactment, requiring multi-shot images containing different views of the specific subject for training, and the learned model cannot generalize to new identities, limiting its further applications. In this work, we propose a one-shot 3D facial avatar reconstruction framework that only requires a single source image to reconstruct a high-fidelity 3D facial avatar. For the challenges of lacking generalization ability and missing multi-view information, we leverage the generative prior of 3D GAN and develop an efficient encoder-decoder network to reconstruct the canonical neural volume of the source image, and further propose a compensation network to complement facial details. To enable fine-grained control over facial dynamics, we propose a deformation field to warp the canonical volume into driven expressions. Through extensive experimental comparisons, we achieve superior synthesis results compared to several state-of-the-art methods.

相關內容

A central challenge of video prediction lies where the system has to reason the objects' future motions from image frames while simultaneously maintaining the consistency of their appearances across frames. This work introduces an end-to-end trainable two-stream video prediction framework, Motion-Matrix-based Video Prediction (MMVP), to tackle this challenge. Unlike previous methods that usually handle motion prediction and appearance maintenance within the same set of modules, MMVP decouples motion and appearance information by constructing appearance-agnostic motion matrices. The motion matrices represent the temporal similarity of each and every pair of feature patches in the input frames, and are the sole input of the motion prediction module in MMVP. This design improves video prediction in both accuracy and efficiency, and reduces the model size. Results of extensive experiments demonstrate that MMVP outperforms state-of-the-art systems on public data sets by non-negligible large margins (about 1 db in PSNR, UCF Sports) in significantly smaller model sizes (84% the size or smaller).

Stereo matching is a significant part in many computer vision tasks and driving-based applications. Recently cost volume-based methods have achieved great success benefiting from the rich geometry information in paired images. However, the redundancy of cost volume also interferes with the model training and limits the performance. To construct a more precise cost volume, we pioneeringly apply the diffusion model to stereo matching. Our method, termed DiffuVolume, considers the diffusion model as a cost volume filter, which will recurrently remove the redundant information from the cost volume. Two main designs make our method not trivial. Firstly, to make the diffusion model more adaptive to stereo matching, we eschew the traditional manner of directly adding noise into the image but embed the diffusion model into a task-specific module. In this way, we outperform the traditional diffusion stereo matching method by 22% EPE improvement and 240 times inference acceleration. Secondly, DiffuVolume can be easily embedded into any volume-based stereo matching network with boost performance but slight parameters rise (only 2%). By adding the DiffuVolume into well-performed methods, we outperform all the published methods on Scene Flow, KITTI2012, KITTI2015 benchmarks and zero-shot generalization setting. It is worth mentioning that the proposed model ranks 1st on KITTI 2012 leader board, 2nd on KITTI 2015 leader board since 15, July 2023.

Video compression has always been a popular research area, where many traditional and deep video compression methods have been proposed. These methods typically rely on signal prediction theory to enhance compression performance by designing high efficient intra and inter prediction strategies and compressing video frames one by one. In this paper, we propose a novel model-based video compression (MVC) framework that regards scenes as the fundamental units for video sequences. Our proposed MVC directly models the intensity variation of the entire video sequence in one scene, seeking non-redundant representations instead of reducing redundancy through spatio-temporal predictions. To achieve this, we employ implicit neural representation as our basic modeling architecture. To improve the efficiency of video modeling, we first propose context-related spatial positional embedding and frequency domain supervision in spatial context enhancement. For temporal correlation capturing, we design the scene flow constrain mechanism and temporal contrastive loss. Extensive experimental results demonstrate that our method achieves up to a 20\% bitrate reduction compared to the latest video coding standard H.266 and is more efficient in decoding than existing video coding strategies.

Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications, where only anomaly-free samples are available for training. Some UAD applications intend to further locate the anomalous regions without any anomaly information. Although the absence of anomalous samples and annotations deteriorates the UAD performance, an inconspicuous yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection and localization in an unsupervised fashion. The flow-based probabilistic models, only trained on anomaly-free data, can efficiently distinguish unpredictable anomalies by assigning them much lower likelihoods than normal data. Nevertheless, the size variation of unpredictable anomalies introduces another inconvenience to the flow-based methods for high-precision anomaly detection and localization. To generalize the anomaly size variation, we propose a novel Multi-Scale Flow-based framework dubbed MSFlow composed of asymmetrical parallel flows followed by a fusion flow to exchange multi-scale perceptions. Moreover, different multi-scale aggregation strategies are adopted for image-wise anomaly detection and pixel-wise anomaly localization according to the discrepancy between them. The proposed MSFlow is evaluated on three anomaly detection datasets, significantly outperforming existing methods. Notably, on the challenging MVTec AD benchmark, our MSFlow achieves a new state-of-the-art with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8%, and PRO score of 97.1%. The reproducible code is available at //github.com/cool-xuan/msflow.

Historical photos are valuable for their cultural and economic significance, but can be difficult to identify accurately due to various challenges such as low-quality images, lack of corroborating evidence, and limited research resources. Misidentified photos can have significant negative consequences, including lost economic value, incorrect historical records, and the spread of misinformation that can lead to perpetuating conspiracy theories. To accurately assess the credibility of a photo identification (ID), it may be necessary to conduct investigative research, use domain knowledge, and consult experts. In this paper, we introduce DoubleCheck, a quality assessment framework for verifying historical photo IDs on Civil War Photo Sleuth (CWPS), a popular online platform for identifying American Civil War-era photos using facial recognition and crowdsourcing. DoubleCheck focuses on improving CWPS's user experience and system architecture to display information useful for assessing the quality of historical photo IDs on CWPS. In a mixed-methods evaluation of DoubleCheck, we found that users contributed a wide diversity of sources for photo IDs, which helped facilitate the community's assessment of these IDs through DoubleCheck's provenance visualizations. Further, DoubleCheck's quality assessment badges and visualizations supported users in making accurate assessments of photo IDs, even in cases involving ID conflicts.

The individual difference between subjects is significant in EEG-based emotion recognition, resulting in the difficulty of sharing the model across subjects. Previous studies use domain adaptation algorithms to minimize the global domain discrepancy while ignoring the class information, which may cause misalignment of subdomains and reduce model performance. This paper proposes a multi-subdomain adversarial network (MSAN) for cross-subject EEG-based emotion recognition. MSAN uses adversarial training to model the discrepancy in the global domain and subdomain to reduce the intra-class distance and enlarge the inter-class distance. In addition, MSAN initializes parameters through a pre-trained autoencoder to ensure the stability and convertibility of the model. The experimental results show that the accuracy of MSAN is improved by 30.02\% on the SEED dataset comparing with the nontransfer method.

Generic sentence embeddings provide a coarse-grained approximation of semantic textual similarity but ignore specific aspects that make texts similar. Conversely, aspect-based sentence embeddings provide similarities between texts based on certain predefined aspects. Thus, similarity predictions of texts are more targeted to specific requirements and more easily explainable. In this paper, we present AspectCSE, an approach for aspect-based contrastive learning of sentence embeddings. Results indicate that AspectCSE achieves an average improvement of 3.97% on information retrieval tasks across multiple aspects compared to the previous best results. We also propose using Wikidata knowledge graph properties to train models of multi-aspect sentence embeddings in which multiple specific aspects are simultaneously considered during similarity predictions. We demonstrate that multi-aspect embeddings outperform single-aspect embeddings on aspect-specific information retrieval tasks. Finally, we examine the aspect-based sentence embedding space and demonstrate that embeddings of semantically similar aspect labels are often close, even without explicit similarity training between different aspect labels.

Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: //github.com/Sara-Ahmed/SiT.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

北京阿比特科技有限公司