亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rise of machine learning (ML) and its embedding in systems has drastically changed the engineering of software-intensive systems. Traditionally, software engineering focuses on manually created artifacts such as source code and the process of creating them, as well as best practices for integrating them, i.e., software architectures. In contrast, the development of ML artifacts, i.e. ML models, comes from data science and focuses on the ML models and their training data. However, to deliver value to end users, these ML models must be embedded in traditional software, often forming complex topologies. In fact, ML-enabled software can easily incorporate many different ML models. While the challenges and practices of building ML-enabled systems have been studied to some extent, beyond isolated examples, little is known about the characteristics of real-world ML-enabled systems. Properly embedding ML models in systems so that they can be easily maintained or reused is far from trivial. We need to improve our empirical understanding of such systems, which we address by presenting the first large-scale study of real ML-enabled software systems, covering over 2,928 open source systems on GitHub. We classified and analyzed them to determine their characteristics, as well as their practices for reusing ML models and related code, and the architecture of these systems. Our findings provide practitioners and researchers with insight into practices for embedding and integrating ML models, bringing data science and software engineering closer together.

相關內容

Federated Learning (FL) is a rising approach towards collaborative and privacy-preserving machine learning where large-scale medical datasets remain localized to each client. However, the issue of data heterogeneity among clients often compels local models to diverge, leading to suboptimal global models. To mitigate the impact of data heterogeneity on FL performance, we start with analyzing how FL training influence FL performance by decomposing the global loss into three terms: local loss, distribution shift loss and aggregation loss. Remarkably, our loss decomposition reveals that existing local training-based FL methods attempt to reduce the distribution shift loss, while the global aggregation-based FL methods propose better aggregation strategies to reduce the aggregation loss. Nevertheless, a comprehensive joint effort to minimize all three terms is currently limited in the literature, leading to subpar performance when dealing with data heterogeneity challenges. To fill this gap, we propose a novel FL method based on global loss decomposition, called FedLD, to jointly reduce these three loss terms. Our FedLD involves a margin control regularization in local training to reduce the distribution shift loss, and a principal gradient-based server aggregation strategy to reduce the aggregation loss. Notably, under different levels of data heterogeneity, our strategies achieve better and more robust performance on retinal and chest X-ray classification compared to other FL algorithms. Our code is available at //github.com/Zeng-Shuang/FedLD.

Efficient inference in high-dimensional models is a central challenge in machine learning. We introduce the Gaussian Ensemble Belief Propagation (GEnBP) algorithm, which combines the strengths of the Ensemble Kalman Filter (EnKF) and Gaussian Belief Propagation (GaBP) to address this challenge. GEnBP updates ensembles of prior samples into posterior samples by passing low-rank local messages over the edges of a graphical model, enabling efficient handling of high-dimensional states, parameters, and complex, noisy, black-box generation processes. By utilizing local message passing within a graphical model structure, GEnBP effectively manages complex dependency structures and remains computationally efficient even when the ensemble size is much smaller than the inference dimension - a common scenario in spatiotemporal modeling, image processing, and physical model inversion. We demonstrate that GEnBP can be applied to various problem structures, including data assimilation, system identification, and hierarchical models, and show through experiments that it outperforms existing methods in terms of accuracy and computational efficiency. Supporting code is available at //github.com/danmackinlay/GEnBP

Quantum Relative Entropy (QRE) programming is a recently popular and challenging class of convex optimization problems with significant applications in quantum computing and quantum information theory. We are interested in modern interior point (IP) methods based on optimal self-concordant barriers for the QRE cone. A range of theoretical and numerical challenges associated with such barrier functions and the QRE cones have hindered the scalability of IP methods. To address these challenges, we propose a series of numerical and linear algebraic techniques and heuristics aimed at enhancing the efficiency of gradient and Hessian computations for the self-concordant barrier function, solving linear systems, and performing matrix-vector products. We also introduce and deliberate about some interesting concepts related to QRE such as symmetric quantum relative entropy (SQRE). We also introduce a two-phase method for performing facial reduction that can significantly improve the performance of QRE programming. Our new techniques have been implemented in the latest version (DDS 2.2) of the software package DDS. In addition to handling QRE constraints, DDS accepts any combination of several other conic and non-conic convex constraints. Our comprehensive numerical experiments encompass several parts including 1) a comparison of DDS 2.2 with Hypatia for the nearest correlation matrix problem, 2) using DDS for combining QRE constraints with various other constraint types, and 3) calculating the key rate for quantum key distribution (QKD) channels and presenting results for several QKD protocols.

With the rapid development of artificial intelligence technology, especially the increasingly widespread application of question-and-answer systems, high-quality question generation has become a key component in supporting the development of these systems. This article focuses on knowledge-based question generation technology, which aims to enable computers to simulate the human questioning process based on understanding specific texts or knowledge bases. In light of the issues of hallucination and knowledge gaps present in large-scale language models when applied to knowledge-intensive tasks, this paper proposes an enhanced question generation method that incorporates contrastive learning. This method utilizes multiple models to jointly mine domain knowledge and uses contrastive learning to guide the model in reducing noise and hallucinations in generation. Experimental results show that by designing prompts containing contrasting examples, the model's performance in question generation improves considerably, particularly when contrasting instructions and examples are used simultaneously, leading to the highest quality of generated questions and improved accuracy. These results demonstrate that the method proposed in this study, which combines contrasting context and chain-of-thought prompts, can effectively improve both the quality and the practicality of question generation.

Deploying machine learning (ML) in dynamic data-driven applications systems (DDDAS) can improve the security of industrial control systems (ICS). However, ML-based DDDAS are vulnerable to adversarial attacks because adversaries can alter the input data slightly so that the ML models predict a different result. In this paper, our goal is to build a resilient edge machine learning (reML) architecture that is designed to withstand adversarial attacks by performing Data Air Gap Transformation (DAGT) to anonymize data feature spaces using deep neural networks and randomize the ML models used for predictions. The reML is based on the Resilient DDDAS paradigm, Moving Target Defense (MTD) theory, and TinyML and is applied to combat adversarial attacks on ICS. Furthermore, the proposed approach is power-efficient and privacy-preserving and, therefore, can be deployed on power-constrained devices to enhance ICS security. This approach enables resilient ML inference at the edge by shifting the computation from the computing-intensive platforms to the resource-constrained edge devices. The incorporation of TinyML with TensorFlow Lite ensures efficient resource utilization and, consequently, makes reML suitable for deployment in various industrial control environments. Furthermore, the dynamic nature of reML, facilitated by the resilient DDDAS development environment, allows for continuous adaptation and improvement in response to emerging threats. Lastly, we evaluate our approach on an ICS dataset and demonstrate that reML provides a viable and effective solution for resilient ML inference at the edge devices.

Physics-informed machine learning (PIML) has emerged as a promising alternative to conventional numerical methods for solving partial differential equations (PDEs). PIML models are increasingly built via deep neural networks (NNs) whose architecture and training process are designed such that the network satisfies the PDE system. While such PIML models have substantially advanced over the past few years, their performance is still very sensitive to the NN's architecture and loss function. Motivated by this limitation, we introduce kernel-weighted Corrective Residuals (CoRes) to integrate the strengths of kernel methods and deep NNs for solving nonlinear PDE systems. To achieve this integration, we design a modular and robust framework which consistently outperforms competing methods in solving a broad range of benchmark problems. This performance improvement has a theoretical justification and is particularly attractive since we simplify the training process while negligibly increasing the inference costs. Additionally, our studies on solving multiple PDEs indicate that kernel-weighted CoRes considerably decrease the sensitivity of NNs to factors such as random initialization, architecture type, and choice of optimizer. We believe our findings have the potential to spark a renewed interest in leveraging kernel methods for solving PDEs.

Federated learning (FL) has emerged as a promising paradigm for fine-tuning foundation models using distributed data in a privacy-preserving manner. Under limited computational resources, clients often find it more practical to fine-tune a selected subset of layers, rather than the entire model, based on their task-specific data. In this study, we provide a thorough theoretical exploration of selective layer fine-tuning in FL, emphasizing a flexible approach that allows the clients to adjust their selected layers according to their local data and resources. We theoretically demonstrate that the layer selection strategy has a significant impact on model convergence in two critical aspects: the importance of selected layers and the heterogeneous choices across clients. Drawing from these insights, we further propose a strategic layer selection method that utilizes local gradients and regulates layer selections across clients. The extensive experiments on both image and text datasets demonstrate the effectiveness of the proposed strategy compared with several baselines, highlighting its advances in identifying critical layers that adapt to the client heterogeneity and training dynamics in FL.

One of the growing trends in machine learning is the use of data generation techniques, since the performance of machine learning models is dependent on the quantity of the training dataset. However, in many medical applications, collecting large datasets is challenging due to resource constraints, which leads to overfitting and poor generalization. This paper introduces a novel method, Artificial Data Point Generation in Clustered Latent Space (AGCL), designed to enhance classification performance on small medical datasets through synthetic data generation. The AGCL framework involves feature extraction, K-means clustering, cluster evaluation based on a class separation metric, and the generation of synthetic data points from clusters with distinct class representations. This method was applied to Parkinson's disease screening, utilizing facial expression data, and evaluated across multiple machine learning classifiers. Experimental results demonstrate that AGCL significantly improves classification accuracy compared to baseline, GN and kNNMTD. AGCL achieved the highest overall test accuracy of 83.33% and cross-validation accuracy of 90.90% in majority voting over different emotions, confirming its effectiveness in augmenting small datasets.

While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible. In this survey, we describe the meta-RL problem setting in detail as well as its major variations. We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, we then survey meta-RL algorithms and applications. We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司