亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reasoning about time is of fundamental importance. Many facts are time-dependent. For example, athletes change teams from time to time, and different government officials are elected periodically. Previous time-dependent question answering (QA) datasets tend to be biased in either their coverage of time spans or question types. In this paper, we introduce a comprehensive probing dataset \tempreason to evaluate the temporal reasoning capability of large language models. Our dataset includes questions of three temporal reasoning levels. In addition, we also propose a novel learning framework to improve the temporal reasoning capability of large language models, based on temporal span extraction and time-sensitive reinforcement learning. We conducted experiments in closed book QA, open book QA, and reasoning QA settings and demonstrated the effectiveness of our approach. Our code and data are released on //github.com/DAMO-NLP-SG/TempReason.

相關內容

自動問答(Question Answering, QA)是指利用計算機自動回答用戶所提出的問題以滿足用戶知識需求的任務。不同于現有搜索引擎,問答系統是信息服務的一種高級形式,系統返回用戶的不再是基于關鍵詞匹配排序的文檔列表,而是精準的自然語言答案。近年來,隨著人工智能的飛速發展,自動問答已經成為倍受關注且發展前景廣泛的研究方向。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Narratives include a rich source of events unfolding over time and context. Automatic understanding of these events provides a summarised comprehension of the narrative for further computation (such as reasoning). In this paper, we study the Information Status (IS) of the events and propose a novel challenging task: the automatic identification of new events in a narrative. We define an event as a triplet of subject, predicate, and object. The event is categorized as new with respect to the discourse context and whether it can be inferred through commonsense reasoning. We annotated a publicly available corpus of narratives with the new events at sentence level using human annotators. We present the annotation protocol and study the quality of the annotation and the difficulty of the task. We publish the annotated dataset, annotation materials, and machine learning baseline models for the task of new event extraction for narrative understanding.

Adversarial attacks can compromise the robustness of real-world detection models. However, evaluating these models under real-world conditions poses challenges due to resource-intensive experiments. Virtual simulations offer an alternative, but the absence of standardized benchmarks hampers progress. Addressing this, we propose an innovative instant-level data generation pipeline using the CARLA simulator. Through this pipeline, we establish the Discrete and Continuous Instant-level (DCI) dataset, enabling comprehensive experiments involving three detection models and three physical adversarial attacks. Our findings highlight diverse model performances under adversarial conditions. Yolo v6 demonstrates remarkable resilience, experiencing just a marginal 6.59% average drop in average precision (AP). In contrast, the ASA attack yields a substantial 14.51% average AP reduction, twice the effect of other algorithms. We also note that static scenes yield higher recognition AP values, and outcomes remain relatively consistent across varying weather conditions. Intriguingly, our study suggests that advancements in adversarial attack algorithms may be approaching its ``limitation''.In summary, our work underscores the significance of adversarial attacks in real-world contexts and introduces the DCI dataset as a versatile benchmark. Our findings provide valuable insights for enhancing the robustness of detection models and offer guidance for future research endeavors in the realm of adversarial attacks.

Post-training quantization (PTQ), which only requires a tiny dataset for calibration without end-to-end retraining, is a light and practical model compression technique. Recently, several PTQ schemes for vision transformers (ViTs) have been presented; unfortunately, they typically suffer from non-trivial accuracy degradation, especially in low-bit cases. In this paper, we propose RepQ-ViT, a novel PTQ framework for ViTs based on quantization scale reparameterization, to address the above issues. RepQ-ViT decouples the quantization and inference processes, where the former employs complex quantizers and the latter employs scale-reparameterized simplified quantizers. This ensures both accurate quantization and efficient inference, which distinguishes it from existing approaches that sacrifice quantization performance to meet the target hardware. More specifically, we focus on two components with extreme distributions: post-LayerNorm activations with severe inter-channel variation and post-Softmax activations with power-law features, and initially apply channel-wise quantization and log$\sqrt{2}$ quantization, respectively. Then, we reparameterize the scales to hardware-friendly layer-wise quantization and log2 quantization for inference, with only slight accuracy or computational costs. Extensive experiments are conducted on multiple vision tasks with different model variants, proving that RepQ-ViT, without hyperparameters and expensive reconstruction procedures, can outperform existing strong baselines and encouragingly improve the accuracy of 4-bit PTQ of ViTs to a usable level. Code is available at //github.com/zkkli/RepQ-ViT.

We present two methods for bounding the probabilities of benefit and harm under unmeasured confounding. The first method computes the (upper or lower) bound of either probability as a function of the observed data distribution and two intuitive sensitivity parameters which, then, can be presented to the analyst as a 2-D plot to assist her in decision making. The second method assumes the existence of a measured nondifferential proxy (i.e., direct effect) of the unmeasured confounder. Using this proxy, tighter bounds than the existing ones can be derived from just the observed data distribution.

For the past 20 years, China has increasingly restricted the access of minors to online games using addiction prevention systems (APSes). At the same time, and through different means, i.e., the Great Firewall of China (GFW), it also restricts general population access to the international Internet. This paper studies how these restrictions impact young online gamers, and their evasion efforts. We present results from surveys (n = 2,415) and semi-structured interviews (n = 35) revealing viable commonly deployed APS evasion techniques and APS vulnerabilities. We conclude that the APS does not work as designed, even against very young online game players, and can act as a censorship evasion training ground for tomorrow's adults, by familiarization with and normalization of general evasion techniques, and desensitization to their dangers. Findings from these studies may further inform developers of censorship-resistant systems about the perceptions and evasion strategies of their prospective users, and help design tools that leverage services and platforms popular among the censored audience.

The downlink channel state information (CSI) estimation and low overhead acquisition are the major challenges for massive MIMO systems in frequency division duplex to enable high MIMO gain. Recently, numerous studies have been conducted to harness the power of deep neural networks for better channel estimation and feedback. However, existing methods have yet to fully exploit the intrinsic correlation features present in CSI. As a consequence, distinct network structures are utilized for handling these two tasks separately. To achieve joint channel estimation and feedback, this paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix. The entire encoder-decoder network is utilized for channel compression. To effectively capture and restructure correlation features, a self-mask-attention coding is proposed, complemented by an active masking strategy designed to improve efficiency. The channel estimation is achieved through the decoder part, wherein a lightweight multilayer perceptron denoising module is utilized for further accurate estimation. Extensive experiments demonstrate that our method not only outperforms state-of-the-art channel estimation and feedback techniques in joint tasks but also achieves beneficial performance in individual tasks.

There has been tremendous progress in generating realistic faces with high fidelity over the past few years. Despite this progress, a crucial question remains unanswered: "Given a generative face model, how many unique identities can it generate?" In other words, what is the biometric capacity of the generative face model? A scientific basis for answering this question will benefit evaluating and comparing different generative face models and establish an upper bound on their scalability. This paper proposes a statistical approach to estimate the biometric capacity of generated face images in a hyperspherical feature space. We employ our approach on multiple generative models, including unconditional generators like StyleGAN, Latent Diffusion Model, and "Generated Photos," as well as DCFace, a class-conditional generator. We also estimate capacity w.r.t. demographic attributes such as gender and age. Our capacity estimates indicate that (a) under ArcFace representation at a false acceptance rate (FAR) of 0.1%, StyleGAN3 and DCFace have a capacity upper bound of $1.43\times10^6$ and $1.190\times10^4$, respectively; (b) the capacity reduces drastically as we lower the desired FAR with an estimate of $1.796\times10^4$ and $562$ at FAR of 1% and 10%, respectively, for StyleGAN3; (c) there is no discernible disparity in the capacity w.r.t gender; and (d) for some generative models, there is an appreciable disparity in the capacity w.r.t age. Code is available at //github.com/human-analysis/capacity-generative-face-models.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.

北京阿比特科技有限公司