亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a frequency-time hybrid solver for the time-dependent wave equation in two-dimensional interior spatial domains. The approach relies on four main elements, namely, 1) A multiple scattering strategy that decomposes a given interior time-domain problem into a sequence of limited-duration time-domain problems of scattering by overlapping open arcs, each one of which is reduced (by means of the Fourier transform) to a sequence of Helmholtz frequency-domain problems; 2) Boundary integral equations on overlapping boundary patches for the solution of the frequency-domain problems in point 1); 3) A smooth "Time-windowing and recentering" methodology that enables both treatment of incident signals of long duration and long time simulation; and, 4) A Fourier transform algorithm that delivers numerically dispersionless, spectrally-accurate time evolution for given incident fields. By recasting the interior time-domain problem in terms of a sequence of open-arc multiple scattering events, the proposed approach regularizes the full interior frequency domain problem-which, if obtained by either Fourier or Laplace transformation of the corresponding interior time-domain problem, must encapsulate infinitely many scattering events, giving rise to non-uniqueness and eigenfunctions in the Fourier case, and ill conditioning in the Laplace case. Numerical examples are included which demonstrate the accuracy and efficiency of the proposed methodology.

相關內容

In this work we extend the shifted Laplacian approach to the elastic Helmholtz equation. The shifted Laplacian multigrid method is a common preconditioning approach for the discretized acoustic Helmholtz equation. In some cases, like geophysical seismic imaging, one needs to consider the elastic Helmholtz equation, which is harder to solve: it is three times larger and contains a nullity-rich grad-div term. These properties make the solution of the equation more difficult for multigrid solvers. The key idea in this work is combining the shifted Laplacian with approaches for linear elasticity. We provide local Fourier analysis and numerical evidence that the convergence rate of our method is independent of the Poisson's ratio. Moreover, to better handle the problem size, we complement our multigrid method with the domain decomposition approach, which works in synergy with the local nature of the shifted Laplacian, so we enjoy the advantages of both methods without sacrificing performance. We demonstrate the efficiency of our solver on 2D and 3D problems in heterogeneous media.

In this paper we consider an approach to improve the performance of exponential integrators/Lawson schemes in cases where the solution of a related, but usually much simpler, problem can be computed efficiently. While for implicit methods such an approach is common (e.g. by using preconditioners), for exponential integrators this has proven more challenging. Here we propose to extract a constant coefficient differential operator from advection-diffusion-reaction equations for which we are then able to compute the required matrix functions efficiently. Both a linear stability analysis and numerical experiments show that the resulting schemes can be unconditionally stable. In fact, we find that exponential integrators and Lawson schemes can have better stability properties than similarly constructed implicit-explicit schemes. We also propose new Lawson type integrators that further improve on these stability properties. The effectiveness of the approach is highlighted by a number of numerical examples in two and three space dimensions.

Throughput-oriented computing via co-running multiple applications in the same machine has been widely adopted to achieve high hardware utilization and energy saving on modern supercomputers and data centers. However, efficiently co-running applications raises new design challenges, mainly because applications with diverse requirements can stress out shared hardware resources (IO, Network and Cache) at various levels. The disparities in resource usage can result in interference, which in turn can lead to unpredictable co-running behaviors. To better understand application interference, prior work provided detailed execution characterization. However, these characterization approaches either emphasize on traditional benchmarks or fall into a single application domain. To address this issue, we study 25 up-to-date applications and benchmarks from various application domains and form 625 consolidation pairs to thoroughly analyze the execution interference caused by application co-running. Moreover, we leverage mini-benchmarks and real applications to pinpoint the provenance of co-running interference in both hardware and software aspects.

This work is concerned with the classical wave equation with a high-contrast coefficient in the spatial derivative operator. We first treat the periodic case, where we derive a new limit in the one-dimensional case. The behavior is illustrated numerically and contrasted to the higher-dimensional case. For general unstructured high-contrast coefficients, we present the Localized Orthogonal Decomposition and show a priori error estimates in suitably weighted norms. Numerical experiments illustrate the convergence rates in various settings.

The Divide and Distribute Fixed Weights algorithm (ddfw) is a dynamic local search SAT-solving algorithm that transfers weight from satisfied to falsified clauses in local minima. ddfw is remarkably effective on several hard combinatorial instances. Yet, despite its success, it has received little study since its debut in 2005. In this paper, we propose three modifications to the base algorithm: a linear weight transfer method that moves a dynamic amount of weight between clauses in local minima, an adjustment to how satisfied clauses are chosen in local minima to give weight, and a weighted-random method of selecting variables to flip. We implemented our modifications to ddfw on top of the solver yalsat. Our experiments show that our modifications boost the performance compared to the original ddfw algorithm on multiple benchmarks, including those from the past three years of SAT competitions. Moreover, our improved solver exclusively solves hard combinatorial instances that refute a conjecture on the lower bound of two Van der Waerden numbers set forth by Ahmed et al. (2014), and it performs well on a hard graph-coloring instance that has been open for over three decades.

We present a fast iterative solver for scattering problems in 2D, where a penetrable object with compact support is considered. By representing the scattered field as a volume potential in terms of the Green's function, we arrive at the Lippmann-Schwinger equation in integral form, which is then discretized using an appropriate quadrature technique. The discretized linear system is then solved using an iterative solver accelerated by Directional Algebraic Fast Multipole Method (DAFMM). The DAFMM presented here relies on the directional admissibility condition of the 2D Helmholtz kernel. And the construction of low-rank factorizations of the appropriate low-rank matrix sub-blocks is based on our new Nested Cross Approximation (NCA)~\cite{ arXiv:2203.14832 [math.NA]}. The advantage of our new NCA is that the search space of so-called far-field pivots is smaller than that of the existing NCAs. Another significant contribution of this work is the use of HODLR based direct solver as a preconditioner to further accelerate the iterative solver. In one of our numerical experiments, the iterative solver does not converge without a preconditioner. We show that the HODLR preconditioner is capable of solving problems that the iterative solver can not. Another noteworthy contribution of this article is that we perform a comparative study of the HODLR based fast direct solver, DAFMM based fast iterative solver, and HODLR preconditioned DAFMM based fast iterative solver for the discretized Lippmann-Schwinger problem. To the best of our knowledge, this work is one of the first to provide a systematic study and comparison of these different solvers for various problem sizes and contrast functions. In the spirit of reproducible computational science, the implementation of the algorithms developed in this article is made available at \url{//github.com/vaishna77/Lippmann_Schwinger_Solver}.

This work introduces a reduced order modeling (ROM) framework for the solution of parameterized second-order linear elliptic partial differential equations formulated on unfitted geometries. The goal is to construct efficient projection-based ROMs, which rely on techniques such as the reduced basis method and discrete empirical interpolation. The presence of geometrical parameters in unfitted domain discretizations entails challenges for the application of standard ROMs. Therefore, in this work we propose a methodology based on i) extension of snapshots on the background mesh and ii) localization strategies to decrease the number of reduced basis functions. The method we obtain is computationally efficient and accurate, while it is agnostic with respect to the underlying discretization choice. We test the applicability of the proposed framework with numerical experiments on two model problems, namely the Poisson and linear elasticity problems. In particular, we study several benchmarks formulated on two-dimensional, trimmed domains discretized with splines and we observe a significant reduction of the online computational cost compared to standard ROMs for the same level of accuracy. Moreover, we show the applicability of our methodology to a three-dimensional geometry of a linear elastic problem.

In this work, we study discrete minimizers of the Ginzburg-Landau energy in finite element spaces. Special focus is given to the influence of the Ginzburg-Landau parameter $\kappa$. This parameter is of physical interest as large values can trigger the appearance of vortex lattices. Since the vortices have to be resolved on sufficiently fine computational meshes, it is important to translate the size of $\kappa$ into a mesh resolution condition, which can be done through error estimates that are explicit with respect to $\kappa$ and the spatial mesh width $h$. For that, we first work in an abstract framework for a general class of discrete spaces, where we present convergence results in a problem-adapted $\kappa$-weighted norm. Afterwards we apply our findings to Lagrangian finite elements and a particular generalized finite element construction. In numerical experiments we confirm that our derived $L^2$- and $H^1$-error estimates are indeed optimal in $\kappa$ and $h$.

Probabilistic models based on continuous latent spaces, such as variational autoencoders, can be understood as uncountable mixture models where components depend continuously on the latent code. They have proven to be expressive tools for generative and probabilistic modelling, but are at odds with tractable probabilistic inference, that is, computing marginals and conditionals of the represented probability distribution. Meanwhile, tractable probabilistic models such as probabilistic circuits (PCs) can be understood as hierarchical discrete mixture models, and thus are capable of performing exact inference efficiently but often show subpar performance in comparison to continuous latent-space models. In this paper, we investigate a hybrid approach, namely continuous mixtures of tractable models with a small latent dimension. While these models are analytically intractable, they are well amenable to numerical integration schemes based on a finite set of integration points. With a large enough number of integration points the approximation becomes de-facto exact. Moreover, for a finite set of integration points, the integration method effectively compiles the continuous mixture into a standard PC. In experiments, we show that this simple scheme proves remarkably effective, as PCs learnt this way set new state of the art for tractable models on many standard density estimation benchmarks.

In this letter, we investigate a novel quadrature spatial scattering modulation (QSSM) transmission technique based on millimeter wave (mmWave) systems, in which the transmitter generates two orthogonal beams targeting candidate scatterers in the channel to carry the real and imaginary parts of the conventional signal, respectively. Meanwhile, the maximum likelihood (ML) detector is adopted at the receiver to recover the received beams and signals. Based on the ML detector, we derive the closed-form average bit error probability (ABEP) expression of the QSSM scheme. Furthermore, we evaluate the asymptotic ABEP expression of the proposed scheme. Monte Carlo simulations verify the exactness and tightness of the derivation results. It is shown that the ABEP performance of QSSM is better than that of traditional spatial scattering modulation.

北京阿比特科技有限公司