Context: Open public data enable different stakeholders to perform analysis and uncover information from different perspectives. The identification and analysis of data from prison systems is not a trivial task. It raises the need for the research community to know how these data have been produced and used. Goal: Analyze prison systems data for the purpose of characterizing its use with respect to data sources, purpose and availability. Method: We performed a systematic mapping on existing evidence on prison systems original data from peer-reviewed studies published between 2000 and 2019. Results: Out of the 531 records, 196 articles were selected from the literature. Conclusion: The vast majority of the analyzed papers (75%) used restricted data. Only 18 studies (9%) provided data, which hampers replication initiatives. This indicates the need to analyze prison system in an integrated fashion, in which multidisciplinary and transparency are relevant issues to consider in such studies.
There have been recent calls for research on the human side of software engineering and its impact on various factors such as productivity, developer happiness and project success. An analysis of which challenges in software engineering teams are most frequent is still missing. We aim to provide a starting point for a theory about relevant human challenges and their causes in software engineering. We establish a reusable set of challenges and start out by investigating the effect of team virtualization. Virtual teams often use digital communication and consist of members with different nationalities. We designed a survey instrument and asked respondents to assess the frequency and criticality of a set of challenges, separated in context "within teams" as well as "between teams and clients", compiled from previous empiric work, blog posts and pilot survey feedback. For the team challenges, we asked if mitigation measures were already in place. Respondents were also asked to provide information about their team setup. The survey also measured Schwartz human values. Finally, respondents were asked if there were additional challenges at their workplace. We report on the results obtained from 192 respondents. We present a set of challenges that takes the survey feedback into account and introduce two categories of challenges; "interpersonal" and "intrapersonal". We found no evidence for links between human values and challenges. We found some significant links between the number of distinct nationalities in a team and certain challenges, with less frequent and critical challenges occurring if 2-3 different nationalities were present compared to a team having members of just one nationality or more than three. A higher degree of virtualization seems to increase the frequency of some human challenges.
The rapid emergence of airborne platforms and imaging sensors are enabling new forms of aerial surveillance due to their unprecedented advantages in scale, mobility, deployment and covert observation capabilities. This paper provides a comprehensive overview of human-centric aerial surveillance tasks from a computer vision and pattern recognition perspective. It aims to provide readers with an in-depth systematic review and technical analysis of the current state of aerial surveillance tasks using drones, UAVs and other airborne platforms. The main object of interest is humans, where single or multiple subjects are to be detected, identified, tracked, re-identified and have their behavior analyzed. More specifically, for each of these four tasks, we first discuss unique challenges in performing these tasks in an aerial setting compared to a ground-based setting. We then review and analyze the aerial datasets publicly available for each task, and delve deep into the approaches in the aerial literature and investigate how they presently address the aerial challenges. We conclude the paper with discussion on the missing gaps and open research questions to inform future research avenues.
The gender gap in computer science (CS) research is a well-studied problem, with an estimated ratio of 15%--30% women researchers. However, far less is known about gender representation in specific fields within CS. Here, we investigate the gender gap in one large field, computer systems. To this end, we combined data from 53 leading systems conferences with external demographic and bibliometric data to evaluate the ratio of women authors and the factors that might affect this ratio. Our main findings are that women represent only about 10% of systems researchers, and that this ratio is not associated with various conference factors such as size, prestige, double-blind reviewing, and inclusivity policies. Author research experience also does not significantly affect this ratio, although author country and work sector do. The 10% ratio of women authors is significantly lower than that of CS as a whole. Our findings suggest that focusing on inclusivity policies alone cannot address this large gap. Increasing women's participation in systems research will require addressing the systemic causes of their exclusion, which are even more pronounced in systems than in the rest of CS.
AI in finance broadly refers to the applications of AI techniques in financial businesses. This area has been lasting for decades with both classic and modern AI techniques applied to increasingly broader areas of finance, economy and society. In contrast to either discussing the problems, aspects and opportunities of finance that have benefited from specific AI techniques and in particular some new-generation AI and data science (AIDS) areas or reviewing the progress of applying specific techniques to resolving certain financial problems, this review offers a comprehensive and dense roadmap of the overwhelming challenges, techniques and opportunities of AI research in finance over the past decades. The landscapes and challenges of financial businesses and data are firstly outlined, followed by a comprehensive categorization and a dense overview of the decades of AI research in finance. We then structure and illustrate the data-driven analytics and learning of financial businesses and data. The comparison, criticism and discussion of classic vs. modern AI techniques for finance are followed. Lastly, open issues and opportunities address future AI-empowered finance and finance-motivated AI research.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Stream processing has been an active research field for more than 20 years, but it is now witnessing its prime time due to recent successful efforts by the research community and numerous worldwide open-source communities. This survey provides a comprehensive overview of fundamental aspects of stream processing systems and their evolution in the functional areas of out-of-order data management, state management, fault tolerance, high availability, load management, elasticity, and reconfiguration. We review noteworthy past research findings, outline the similarities and differences between early ('00-'10) and modern ('11-'18) streaming systems, and discuss recent trends and open problems.
To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.
Driven by the visions of Internet of Things and 5G communications, the edge computing systems integrate computing, storage and network resources at the edge of the network to provide computing infrastructure, enabling developers to quickly develop and deploy edge applications. Nowadays the edge computing systems have received widespread attention in both industry and academia. To explore new research opportunities and assist users in selecting suitable edge computing systems for specific applications, this survey paper provides a comprehensive overview of the existing edge computing systems and introduces representative projects. A comparison of open source tools is presented according to their applicability. Finally, we highlight energy efficiency and deep learning optimization of edge computing systems. Open issues for analyzing and designing an edge computing system are also studied in this survey.
Reinforcement learning (RL) algorithms have been around for decades and been employed to solve various sequential decision-making problems. These algorithms however have faced great challenges when dealing with high-dimensional environments. The recent development of deep learning has enabled RL methods to drive optimal policies for sophisticated and capable agents, which can perform efficiently in these challenging environments. This paper addresses an important aspect of deep RL related to situations that demand multiple agents to communicate and cooperate to solve complex tasks. A survey of different approaches to problems related to multi-agent deep RL (MADRL) is presented, including non-stationarity, partial observability, continuous state and action spaces, multi-agent training schemes, multi-agent transfer learning. The merits and demerits of the reviewed methods will be analyzed and discussed, with their corresponding applications explored. It is envisaged that this review provides insights about various MADRL methods and can lead to future development of more robust and highly useful multi-agent learning methods for solving real-world problems.
With the ever-growing volume, complexity and dynamicity of online information, recommender system has been an effective key solution to overcome such information overload. In recent years, deep learning's revolutionary advances in speech recognition, image analysis and natural language processing have gained significant attention. Meanwhile, recent studies also demonstrate its effectiveness in coping with information retrieval and recommendation tasks. Applying deep learning techniques into recommender system has been gaining momentum due to its state-of-the-art performances and high-quality recommendations. In contrast to traditional recommendation models, deep learning provides a better understanding of user's demands, item's characteristics and historical interactions between them. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems towards fostering innovations of recommender system research. A taxonomy of deep learning based recommendation models is presented and used to categorize the surveyed articles. Open problems are identified based on the analytics of the reviewed works and potential solutions discussed.