This paper explores the possibility of using ChatGPT to develop advanced phishing attacks and automate their large-scale deployment. We make ChatGPT generate the following parts of a phishing attack: i) cloning a targeted website, ii) integrating code for stealing credentials, iii) obfuscating code, iv) automating website deployment on a hosting provider, v) registering a phishing domain name, and vi) integrating the website with a reverse proxy. The initial assessment of the automatically generated phishing kits highlights their rapid generation and deployment process as well as the close resemblance of the resulting pages to the target website. More broadly, we demonstrate that recent advances in AI underscore the potential risks of its misuse in phishing attacks, which can lead to their increased prevalence and severity. This highlights the necessity for enhanced countermeasures within AI systems.
This paper explores the development of UniFolding, a sample-efficient, scalable, and generalizable robotic system for unfolding and folding various garments. UniFolding employs the proposed UFONet neural network to integrate unfolding and folding decisions into a single policy model that is adaptable to different garment types and states. The design of UniFolding is based on a garment's partial point cloud, which aids in generalization and reduces sensitivity to variations in texture and shape. The training pipeline prioritizes low-cost, sample-efficient data collection. Training data is collected via a human-centric process with offline and online stages. The offline stage involves human unfolding and folding actions via Virtual Reality, while the online stage utilizes human-in-the-loop learning to fine-tune the model in a real-world setting. The system is tested on two garment types: long-sleeve and short-sleeve shirts. Performance is evaluated on 20 shirts with significant variations in textures, shapes, and materials. More experiments and videos can be found in the supplementary materials and on the website: //unifolding.robotflow.ai
This paper analyzes the design choices of face detection architecture that improve efficiency of computation cost and accuracy. Specifically, we re-examine the effectiveness of the standard convolutional block as a lightweight backbone architecture for face detection. Unlike the current tendency of lightweight architecture design, which heavily utilizes depthwise separable convolution layers, we show that heavily channel-pruned standard convolution layers can achieve better accuracy and inference speed when using a similar parameter size. This observation is supported by the analyses concerning the characteristics of the target data domain, faces. Based on our observation, we propose to employ ResNet with a highly reduced channel, which surprisingly allows high efficiency compared to other mobile-friendly networks (e.g., MobileNetV1, V2, V3). From the extensive experiments, we show that the proposed backbone can replace that of the state-of-the-art face detector with a faster inference speed. Also, we further propose a new feature aggregation method to maximize the detection performance. Our proposed detector EResFD obtained 80.4% mAP on WIDER FACE Hard subset which only takes 37.7 ms for VGA image inference on CPU. Code is available at //github.com/clovaai/EResFD.
This paper explores a prevailing trend in the industry: migrating data-intensive analytics applications from on-premises to cloud-native environments. We find that the unique cost models associated with cloud-based storage necessitate a more nuanced understanding of optimizing performance. Specifically, based on traces collected from Uber's Presto fleet in production, we argue that common I/O optimizations, such as table scan and filter, and broadcast join, may lead to unexpected costs when naively applied in the cloud. This is because traditional I/O optimizations mainly focus on improving throughput or latency in on-premises settings, without taking into account the monetary costs associated with storage API calls. In cloud environments, these costs can be significant, potentially involving billions of API calls per day just for Presto workloads at Uber scale. Presented as a case study, this paper serves as a starting point for further research to design efficient I/O strategies specifically tailored for data-intensive applications in cloud settings.
This paper proposes a thermal-infrared (TIR) remote target detection system for maritime rescue using deep learning and data augmentation. We established a self-collected TIR dataset consisting of multiple scenes imitating human rescue situations using a TIR camera (FLIR). Additionally, to address dataset scarcity and improve model robustness, a synthetic dataset from a 3D game (ARMA3) to augment the data is further collected. However, a significant domain gap exists between synthetic TIR and real TIR images. Hence, a proper domain adaptation algorithm is essential to overcome the gap. Therefore, we suggest a domain adaptation algorithm in a target-background separated manner from 3D game-to-real, based on a generative model, to address this issue. Furthermore, a segmentation network with fixed-weight kernels at the head is proposed to improve the signal-to-noise ratio (SNR) and provide weak attention, as remote TIR targets inherently suffer from unclear boundaries. Experiment results reveal that the network trained on augmented data consisting of translated synthetic and real TIR data outperforms that trained on only real TIR data by a large margin. Furthermore, the proposed segmentation model surpasses the performance of state-of-the-art segmentation methods.
The research on Reconfigurable Intelligent Surfaces (RISs) has dominantly been focused on physical-layer aspects and analyses of the achievable adaptation of the wireless propagation environment. Compared to that, questions related to system-level integration of RISs have received less attention. We address this research gap by analyzing the necessary control/signaling operations that are necessary to integrate RIS as a new type of wireless infrastructure element. We build a general model for evaluating the impact of control operations along two dimensions: i) the allocated bandwidth of the control channels (in-band and out-of-band), and ii) the rate selection for the data channel (multiplexing or diversity). Specifically, the second dimension results in two generic transmission schemes, one based on channel estimation and the subsequent optimization of the RIS, while the other is based on sweeping through predefined RIS phase configurations. We analyze the communication performance in multiple setups built along these two dimensions. While necessarily simplified, our analysis reveals the basic trade-offs in RIS-assisted communication and the associated control operations. The main contribution of the paper is a methodology for systematic evaluation of the control overhead in RIS-aided networks, regardless of the specific control schemes used.
This paper investigates posterior sampling algorithms for competitive reinforcement learning (RL) in the context of general function approximations. Focusing on zero-sum Markov games (MGs) under two critical settings, namely self-play and adversarial learning, we first propose the self-play and adversarial generalized eluder coefficient (GEC) as complexity measures for function approximation, capturing the exploration-exploitation trade-off in MGs. Based on self-play GEC, we propose a model-based self-play posterior sampling method to control both players to learn Nash equilibrium, which can successfully handle the partial observability of states. Furthermore, we identify a set of partially observable MG models fitting MG learning with the adversarial policies of the opponent. Incorporating the adversarial GEC, we propose a model-based posterior sampling method for learning adversarial MG with potential partial observability. We further provide low regret bounds for proposed algorithms that can scale sublinearly with the proposed GEC and the number of episodes $T$. To the best of our knowledge, we for the first time develop generic model-based posterior sampling algorithms for competitive RL that can be applied to a majority of tractable zero-sum MG classes in both fully observable and partially observable MGs with self-play and adversarial learning.
Regular monitoring of the primary particles and purity profiles of a drug product during development and manufacturing processes is essential for manufacturers to avoid product variability and contamination. Transmission electron microscopy (TEM) imaging helps manufacturers predict how changes affect particle characteristics and purity for virus-based gene therapy vector products and intermediates. Since intact particles can characterize efficacious products, it is beneficial to automate the detection of intact adenovirus against a non-intact-viral background mixed with debris, broken, and artefact particles. In the presence of such particles, detecting intact adenoviruses becomes more challenging. To overcome the challenge, due to such a presence, we developed a software tool for semi-automatic annotation and segmentation of adenoviruses and a software tool for automatic segmentation and detection of intact adenoviruses in TEM imaging systems. The developed semi-automatic tool exploited conventional image analysis techniques while the automatic tool was built based on convolutional neural networks and image analysis techniques. Our quantitative and qualitative evaluations showed outstanding true positive detection rates compared to false positive and negative rates where adenoviruses were nicely detected without mistaking them for real debris, broken adenoviruses, and/or staining artefacts.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.