亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reduced-rank regression recognises the possibility of a rank-deficient matrix of coefficients, which is particularly useful when the data is high-dimensional. We propose a novel Bayesian model for estimating the rank of the rank of the coefficient matrix, which obviates the need of post-processing steps, and allows for uncertainty quantification. Our method employs a mixture prior on the regression coefficient matrix along with a global-local shrinkage prior on its low-rank decomposition. Then, we rely on the Signal Adaptive Variable Selector to perform sparsification, and define two novel tools, the Posterior Inclusion Probability uncertainty index and the Relevance Index. The validity of the method is assessed in a simulation study, then its advantages and usefulness are shown in real-data applications on the chemical composition of tobacco and on the photometry of galaxies.

相關內容

Matrix factorizations in dual number algebra, a hypercomplex system, have been applied to kinematics, mechanisms, and other fields recently. We develop an approach to identify spatiotemporal patterns in the brain such as traveling waves using the singular value decomposition of dual matrices in this paper. Theoretically, we propose the compact dual singular value decomposition (CDSVD) of dual complex matrices with explicit expressions as well as a necessary and sufficient condition for its existence. Furthermore, based on the CDSVD, we report on the optimal solution to the best rank-$k$ approximation under a newly defined quasi-metric in the dual complex number system. The CDSVD is also related to the dual Moore-Penrose generalized inverse. Numerically, comparisons with other available algorithms are conducted, which indicate less computational costs of our proposed CDSVD. In addition, the infinitesimal part of the CDSVD can identify the true rank of the original matrix from the noise-added matrix, but the classical SVD cannot. Next, we employ experiments on simulated time-series data and a road monitoring video to demonstrate the beneficial effect of the infinitesimal parts of dual matrices in spatiotemporal pattern identification. Finally, we apply this approach to the large-scale brain fMRI data, identify three kinds of traveling waves, and further validate the consistency between our analytical results and the current knowledge of cerebral cortex function.

Representation learning plays a crucial role in automated feature selection, particularly in the context of high-dimensional data, where non-parametric methods often struggle. In this study, we focus on supervised learning scenarios where the pertinent information resides within a lower-dimensional linear subspace of the data, namely the multi-index model. If this subspace were known, it would greatly enhance prediction, computation, and interpretation. To address this challenge, we propose a novel method for linear feature learning with non-parametric prediction, which simultaneously estimates the prediction function and the linear subspace. Our approach employs empirical risk minimisation, augmented with a penalty on function derivatives, ensuring versatility. Leveraging the orthogonality and rotation invariance properties of Hermite polynomials, we introduce our estimator, named RegFeaL. By utilising alternative minimisation, we iteratively rotate the data to improve alignment with leading directions and accurately estimate the relevant dimension in practical settings. We establish that our method yields a consistent estimator of the prediction function with explicit rates. Additionally, we provide empirical results demonstrating the performance of RegFeaL in various experiments.

How can we quantify uncertainty if our favorite computational tool - be it a numerical, a statistical, or a machine learning approach, or just any computer model - provides single-valued output only? In this article, we introduce the Easy Uncertainty Quantification (EasyUQ) technique, which transforms real-valued model output into calibrated statistical distributions, based solely on training data of model output-outcome pairs, without any need to access model input. In its basic form, EasyUQ is a special case of the recently introduced Isotonic Distributional Regression (IDR) technique that leverages the pool-adjacent-violators algorithm for nonparametric isotonic regression. EasyUQ yields discrete predictive distributions that are calibrated and optimal in finite samples, subject to stochastic monotonicity. The workflow is fully automated, without any need for tuning. The Smooth EasyUQ approach supplements IDR with kernel smoothing, to yield continuous predictive distributions that preserve key properties of the basic form, including both, stochastic monotonicity with respect to the original model output, and asymptotic consistency. For the selection of kernel parameters, we introduce multiple one-fit grid search, a computationally much less demanding approximation to leave-one-out cross-validation. We use simulation examples and forecast data from weather prediction to illustrate the techniques. In a study of benchmark problems from machine learning, we show how EasyUQ and Smooth EasyUQ can be integrated into the workflow of neural network learning and hyperparameter tuning, and find EasyUQ to be competitive with conformal prediction, as well as more elaborate input-based approaches.

Bayesian inference is often utilized for uncertainty quantification tasks. A recent analysis by Xu and Raginsky 2022 rigorously decomposed the predictive uncertainty in Bayesian inference into two uncertainties, called aleatoric and epistemic uncertainties, which represent the inherent randomness in the data-generating process and the variability due to insufficient data, respectively. They analyzed those uncertainties in an information-theoretic way, assuming that the model is well-specified and treating the model's parameters as latent variables. However, the existing information-theoretic analysis of uncertainty cannot explain the widely believed property of uncertainty, known as the sensitivity between the test and training data. It implies that when test data are similar to training data in some sense, the epistemic uncertainty should become small. In this work, we study such uncertainty sensitivity using our novel decomposition method for the predictive uncertainty. Our analysis successfully defines such sensitivity using information-theoretic quantities. Furthermore, we extend the existing analysis of Bayesian meta-learning and show the novel sensitivities among tasks for the first time.

We study partially linear models in settings where observations are arranged in independent groups but may exhibit within-group dependence. Existing approaches estimate linear model parameters through weighted least squares, with optimal weights (given by the inverse covariance of the response, conditional on the covariates) typically estimated by maximising a (restricted) likelihood from random effects modelling or by using generalised estimating equations. We introduce a new 'sandwich loss' whose population minimiser coincides with the weights of these approaches when the parametric forms for the conditional covariance are well-specified, but can yield arbitrarily large improvements in linear parameter estimation accuracy when they are not. Under relatively mild conditions, our estimated coefficients are asymptotically Gaussian and enjoy minimal variance among estimators with weights restricted to a given class of functions, when user-chosen regression methods are used to estimate nuisance functions. We further expand the class of functional forms for the weights that may be fitted beyond parametric models by leveraging the flexibility of modern machine learning methods within a new gradient boosting scheme for minimising the sandwich loss. We demonstrate the effectiveness of both the sandwich loss and what we call 'sandwich boosting' in a variety of settings with simulated and real-world data.

We consider the problem of model selection when grouping structure is inherent within the regressors. Using a Bayesian approach, we model the mean vector by a one-group global-local shrinkage prior belonging to a broad class of such priors that includes the horseshoe prior. In the context of variable selection, this class of priors was studied by Tang et al. (2018) \cite{tang2018bayesian}. A modified form of the usual class of global-local shrinkage priors with polynomial tail on the group regression coefficients is proposed. The resulting threshold rule selects the active group if within a group, the ratio of the $L_2$ norm of the posterior mean of its group coefficient to that of the corresponding ordinary least square group estimate is greater than a half. In the theoretical part of this article, we have used the global shrinkage parameter either as a tuning one or an empirical Bayes estimate of it depending on the knowledge regarding the underlying sparsity of the model. When the proportion of active groups is known, using $\tau$ as a tuning parameter, we have proved that our method enjoys variable selection consistency. In case this proportion is unknown, we propose an empirical Bayes estimate of $\tau$. Even if this empirical Bayes estimate is used, then also our half-thresholding rule captures the true sparse group structure. Though our theoretical works rely on a special form of the design matrix, but for general design matrices also, our simulation results show that the half-thresholding rule yields results similar to that of Yang and Narisetty (2020) \cite{yang2020consistent}. As a consequence of this, in a high dimensional sparse group selection problem, instead of using the so-called `gold standard' spike and slab prior, one can use the one-group global-local shrinkage priors with polynomial tail to obtain similar results.

To improve the uncertainty quantification of variance networks, we propose a novel tree-structured local neural network model that partitions the feature space into multiple regions based on uncertainty heterogeneity. A tree is built upon giving the training data, whose leaf nodes represent different regions where region-specific neural networks are trained to predict both the mean and the variance for quantifying uncertainty. The proposed Uncertainty-Splitting Neural Regression Tree (USNRT) employs novel splitting criteria. At each node, a neural network is trained on the full data first, and a statistical test for the residuals is conducted to find the best split, corresponding to the two sub-regions with the most significant uncertainty heterogeneity between them. USNRT is computationally friendly because very few leaf nodes are sufficient and pruning is unnecessary. Furthermore, an ensemble version can be easily constructed to estimate the total uncertainty including the aleatory and epistemic. On extensive UCI datasets, USNRT or its ensemble shows superior performance compared to some recent popular methods for quantifying uncertainty with variances. Through comprehensive visualization and analysis, we uncover how USNRT works and show its merits, revealing that uncertainty heterogeneity does exist in many datasets and can be learned by USNRT.

We consider bootstrap inference for estimators which are (asymptotically) biased. We show that, even when the bias term cannot be consistently estimated, valid inference can be obtained by proper implementations of the bootstrap. Specifically, we show that the prepivoting approach of Beran (1987, 1988), originally proposed to deliver higher-order refinements, restores bootstrap validity by transforming the original bootstrap p-value into an asymptotically uniform random variable. We propose two different implementations of prepivoting (plug-in and double bootstrap), and provide general high-level conditions that imply validity of bootstrap inference. To illustrate the practical relevance and implementation of our results, we discuss five examples: (i) inference on a target parameter based on model averaging; (ii) ridge-type regularized estimators; (iii) nonparametric regression; (iv) a location model for infinite variance data; and (v) dynamic panel data models.

Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

北京阿比特科技有限公司