We introduce a new algorithm promoting sparsity called {\it Support Exploration Algorithm (SEA)} and analyze it in the context of support recovery/model selection problems.The algorithm can be interpreted as an instance of the {\it straight-through estimator (STE)} applied to the resolution of a sparse linear inverse problem. SEA uses a non-sparse exploratory vector and makes it evolve in the input space to select the sparse support. We put to evidence an oracle update rule for the exploratory vector and consider the STE update. The theoretical analysis establishes general sufficient conditions of support recovery. The general conditions are specialized to the case where the matrix $A$ performing the linear measurements satisfies the {\it Restricted Isometry Property (RIP)}.Experiments show that SEA can efficiently improve the results of any algorithm. Because of its exploratory nature, SEA also performs remarkably well when the columns of $A$ are strongly coherent.
This paper considers the sparse recovery with shuffled labels, i.e., $\by = \bPitrue \bX \bbetatrue + \bw$, where $\by \in \RR^n$, $\bPi\in \RR^{n\times n}$, $\bX\in \RR^{n\times p}$, $\bbetatrue\in \RR^p$, $\bw \in \RR^n$ denote the sensing result, the unknown permutation matrix, the design matrix, the sparse signal, and the additive noise, respectively. Our goal is to reconstruct both the permutation matrix $\bPitrue$ and the sparse signal $\bbetatrue$. We investigate this problem from both the statistical and computational aspects. From the statistical aspect, we first establish the minimax lower bounds on the sample number $n$ and the \emph{signal-to-noise ratio} ($\snr$) for the correct recovery of permutation matrix $\bPitrue$ and the support set $\supp(\bbetatrue)$, to be more specific, $n \gtrsim k\log p$ and $\log\snr \gtrsim \log n + \frac{k\log p}{n}$. Then, we confirm the tightness of these minimax lower bounds by presenting an exhaustive-search based estimator whose performance matches the lower bounds thereof up to some multiplicative constants. From the computational aspect, we impose a parsimonious assumption on the number of permuted rows and propose a computationally-efficient estimator accordingly. Moreover, we show that our proposed estimator can obtain the ground-truth $(\bPitrue, \supp(\bbetatrue))$ under mild conditions. Furthermore, we provide numerical experiments to corroborate our claims.
We develop an optimization-based algorithm for parametric model order reduction (PMOR) of linear time-invariant dynamical systems. Our method aims at minimizing the $\mathcal{H}_\infty \otimes \mathcal{L}_\infty$ approximation error in the frequency and parameter domain by an optimization of the reduced order model (ROM) matrices. State-of-the-art PMOR methods often compute several nonparametric ROMs for different parameter samples, which are then combined to a single parametric ROM. However, these parametric ROMs can have a low accuracy between the utilized sample points. In contrast, our optimization-based PMOR method minimizes the approximation error across the entire parameter domain. Moreover, due to our flexible approach of optimizing the system matrices directly, we can enforce favorable features such as a port-Hamiltonian structure in our ROMs across the entire parameter domain. Our method is an extension of the recently developed SOBMOR-algorithm to parametric systems. We extend both the ROM parameterization and the adaptive sampling procedure to the parametric case. Several numerical examples demonstrate the effectiveness and high accuracy of our method in a comparison with other PMOR methods.
Inverse Reinforcement Learning (IRL) is a powerful paradigm for inferring a reward function from expert demonstrations. Many IRL algorithms require a known transition model and sometimes even a known expert policy, or they at least require access to a generative model. However, these assumptions are too strong for many real-world applications, where the environment can be accessed only through sequential interaction. We propose a novel IRL algorithm: Active exploration for Inverse Reinforcement Learning (AceIRL), which actively explores an unknown environment and expert policy to quickly learn the expert's reward function and identify a good policy. AceIRL uses previous observations to construct confidence intervals that capture plausible reward functions and find exploration policies that focus on the most informative regions of the environment. AceIRL is the first approach to active IRL with sample-complexity bounds that does not require a generative model of the environment. AceIRL matches the sample complexity of active IRL with a generative model in the worst case. Additionally, we establish a problem-dependent bound that relates the sample complexity of AceIRL to the suboptimality gap of a given IRL problem. We empirically evaluate AceIRL in simulations and find that it significantly outperforms more naive exploration strategies.
Recent rapid developments in reinforcement learning algorithms have been giving us novel possibilities in many fields. However, due to their exploring property, we have to take the risk into consideration when we apply those algorithms to safety-critical problems especially in real environments. In this study, we deal with a safe exploration problem in reinforcement learning under the existence of disturbance. We define the safety during learning as satisfaction of the constraint conditions explicitly defined in terms of the state and propose a safe exploration method that uses partial prior knowledge of a controlled object and disturbance. The proposed method assures the satisfaction of the explicit state constraints with a pre-specified probability even if the controlled object is exposed to a stochastic disturbance following a normal distribution. As theoretical results, we introduce sufficient conditions to construct conservative inputs not containing an exploring aspect used in the proposed method and prove that the safety in the above explained sense is guaranteed with the proposed method. Furthermore, we illustrate the validity and effectiveness of the proposed method through numerical simulations of an inverted pendulum and a four-bar parallel link robot manipulator.
This paper is dedicated to achieving scalable relative state estimation using inter-robot Euclidean distance measurements. We consider equipping robots with distance sensors and focus on the optimization problem underlying relative state estimation in this setup. We reveal the commonality between this problem and the coordinates realization problem of a sensor network. Based on this insight, we propose an effective unconstrained optimization model to infer the relative states among robots. To work on this model in a distributed manner, we propose an efficient and scalable optimization algorithm with the classical block coordinate descent method as its backbone. This algorithm exactly solves each block update subproblem with a closed-form solution while ensuring convergence. Our results pave the way for distance measurements-based relative state estimation in large-scale multi-robot systems.
This paper describes a technique for using magnetic motion capture data to determine the joint parameters of an articulated hierarchy. This technique makes it possible to determine limb lengths, joint locations, and sensor placement for a human subject without external measurements. Instead, the joint parameters are inferred with high accuracy from the motion data acquired during the capture session. The parameters are computed by performing a linear least squares fit of a rotary joint model to the input data. A hierarchical structure for the articulated model can also be determined in situations where the topology of the model is not known. Once the system topology and joint parameters have been recovered, the resulting model can be used to perform forward and inverse kinematic procedures. We present the results of using the algorithm on human motion capture data, as well as validation results obtained with data from a simulation and a wooden linkage of known dimensions.
Graph exploration is one of the fundamental tasks performed by a mobile agent in a graph. An $n$-node graph has unlabeled nodes, and all ports at any node of degree $d$ are arbitrarily numbered $0,\dots, d-1$. A mobile agent, initially situated at some starting node $v$, has to visit all nodes of the graph and stop. In the absence of any initial knowledge of the graph the task of deterministic exploration is often impossible. On the other hand, for some families of graphs it is possible to design deterministic exploration algorithms working for any graph of the family. We call such families of graphs {\em explorable}. Examples of explorable families are all finite families of graphs, as well as the family of all trees. In this paper we study the problem of which families of graphs are explorable. We characterize all such families, and then ask the question whether there exists a universal deterministic algorithm that, given an explorable family of graphs, explores any graph of this family, without knowing which graph of the family is being explored. The answer to this question turns out to depend on how the explorable family is given to the hypothetical universal algorithm. If the algorithm can get the answer to any yes/no question about the family, then such a universal algorithm can be constructed. If, on the other hand, the algorithm can be only given an algorithmic description of the input explorable family, then such a universal deterministic algorithm does not exist.
The Wasserstein distance between mixing measures has come to occupy a central place in the statistical analysis of mixture models. This work proposes a new canonical interpretation of this distance and provides tools to perform inference on the Wasserstein distance between mixing measures in topic models. We consider the general setting of an identifiable mixture model consisting of mixtures of distributions from a set $\mathcal{A}$ equipped with an arbitrary metric $d$, and show that the Wasserstein distance between mixing measures is uniquely characterized as the most discriminative convex extension of the metric $d$ to the set of mixtures of elements of $\mathcal{A}$. The Wasserstein distance between mixing measures has been widely used in the study of such models, but without axiomatic justification. Our results establish this metric to be a canonical choice. Specializing our results to topic models, we consider estimation and inference of this distance. Though upper bounds for its estimation have been recently established elsewhere, we prove the first minimax lower bounds for the estimation of the Wasserstein distance in topic models. We also establish fully data-driven inferential tools for the Wasserstein distance in the topic model context. Our results apply to potentially sparse mixtures of high-dimensional discrete probability distributions. These results allow us to obtain the first asymptotically valid confidence intervals for the Wasserstein distance in topic models.
We study reward-free reinforcement learning (RL) with linear function approximation, where the agent works in two phases: (1) in the exploration phase, the agent interacts with the environment but cannot access the reward; and (2) in the planning phase, the agent is given a reward function and is expected to find a near-optimal policy based on samples collected in the exploration phase. The sample complexities of existing reward-free algorithms have a polynomial dependence on the planning horizon, which makes them intractable for long planning horizon RL problems. In this paper, we propose a new reward-free algorithm for learning linear mixture Markov decision processes (MDPs), where the transition probability can be parameterized as a linear combination of known feature mappings. At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward and a high-order moment estimator for the aleatoric and epistemic uncertainties. When the total reward is bounded by $1$, we show that our algorithm only needs to explore $\tilde O( d^2\varepsilon^{-2})$ episodes to find an $\varepsilon$-optimal policy, where $d$ is the dimension of the feature mapping. The sample complexity of our algorithm only has a polylogarithmic dependence on the planning horizon and therefore is ``horizon-free''. In addition, we provide an $\Omega(d^2\varepsilon^{-2})$ sample complexity lower bound, which matches the sample complexity of our algorithm up to logarithmic factors, suggesting that our algorithm is optimal.
Blind source separation (BSS) aims to recover an unobserved signal $S$ from its mixture $X=f(S)$ under the condition that the effecting transformation $f$ is invertible but unknown. As this is a basic problem with many practical applications, a fundamental issue is to understand how the solutions to this problem behave when their supporting statistical prior assumptions are violated. In the classical context of linear mixtures, we present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$. Modelling $S$ as a multidimensional stochastic process, we introduce an informative topology on the space of possible causes underlying a mixture $X$, and show that the behaviour of a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees with respect to this topology. This allows for a flexible and convenient quantification of general model uncertainty scenarios and amounts to the first comprehensive robustness framework for BSS. Our approach is entirely constructive, and we demonstrate its utility with novel theoretical guarantees for a number of statistical applications.