In this paper, we revisit McFadden (1978)'s correction factor for sampling of alternatives in multinomial logit (MNL) and mixed multinomial logit (MMNL) models. McFadden (1978) proved that consistent parameter estimates are obtained when estimating MNL models using a sampled subset of alternatives, including the chosen alternative, in combination with a correction factor. We decompose this correction factor into i) a correction for overestimating the MNL choice probability due to using a smaller subset of alternatives, and ii) a correction for which a subset of alternatives is contrasted through utility differences and thereby the extent to which we learn about the parameters of interest in MNL. Keane and Wasi (2016) proved that the overall expected positive information divergence - comprising the above two elements - is minimised between the true and sampled likelihood when applying a sampling protocol satisfying uniform conditioning. We generalise their result to the case of positive conditioning and show that whilst McFadden (1978)'s correction factor may not minimise the overall expected information divergence, it does minimise the expected information loss with respect to the parameters of interest. We apply this result in the context of Bayesian analysis and show that McFadden (1978)'s correction factor minimises the expected information loss regarding the parameters of interest across the entire posterior density irrespective of sample size. In other words, McFadden (1978)'s correction factor has desirable small and large sample properties. We also show that our results for Bayesian MNL models transfer to MMNL and that only McFadden (1978) correction factor is sufficient to minimise the expected information loss in the parameters of interest. Monte Carlo simulations illustrate the successful application of sampling of alternatives in Bayesian MMNL models.
Selection models are ubiquitous in statistics. In recent years, they have regained considerable popularity as the working inferential models in many selective inference problems. In this paper, we derive an asymptotic expansion of the local likelihood ratios of selection models. We show that under mild regularity conditions, they are asymptotically equivalent to a sequence of Gaussian selection models. This generalizes the Local Asymptotic Normality framework of Le Cam (1960). Furthermore, we derive the asymptotic shape of Bayesian posterior distributions constructed from selection models, and show that they can be significantly miscalibrated in a frequentist sense.
This paper presents a novel centralized, variational data assimilation approach for calibrating transient dynamic models in electrical power systems, focusing on load model parameters. With the increasing importance of inverter-based resources, assessing power systems' dynamic performance under disturbances has become challenging, necessitating robust model calibration methods. The proposed approach expands on previous Bayesian frameworks by establishing a posterior distribution of parameters using an approximation around the maximum a posteriori value. We illustrate the efficacy of our method by generating events of varying intensity, highlighting its ability to capture the systems' evolution accurately and with associated uncertainty estimates. This research improves the precision of dynamic performance assessments in modern power systems, with potential applications in managing uncertainties and optimizing system operations.
Randomness in the void distribution within a ductile metal complicates quantitative modeling of damage following the void growth to coalescence failure process. Though the sequence of micro-mechanisms leading to ductile failure is known from unit cell models, often based on assumptions of a regular distribution of voids, the effect of randomness remains a challenge. In the present work, mesoscale unit cell models, each containing an ensemble of four voids of equal size that are randomly distributed, are used to find statistical effects on the yield surface of the homogenized material. A yield locus is found based on a mean yield surface and a standard deviation of yield points obtained from 15 realizations of the four-void unit cells. It is found that the classical GTN model very closely agrees with the mean of the yield points extracted from the unit cell calculations with random void distributions, while the standard deviation $\textbf{S}$ varies with the imposed stress state. It is shown that the standard deviation is nearly zero for stress triaxialities $T\leq1/3$, while it rapidly increases for triaxialities above $T\approx 1$, reaching maximum values of about $\textbf{S}/\sigma_0\approx0.1$ at $T \approx 4$. At even higher triaxialities it decreases slightly. The results indicate that the dependence of the standard deviation on the stress state follows from variations in the deformation mechanism since a well-correlated variation is found for the volume fraction of the unit cell that deforms plastically at yield. Thus, the random void distribution activates different complex localization mechanisms at high stress triaxialities that differ from the ligament thinning mechanism forming the basis for the classical GTN model. A method for introducing the effect of randomness into the GTN continuum model is presented, and an excellent comparison to the unit cell yield locus is achieved.
In this paper, we explore the application of semidefinite programming to the realm of quantum codes, specifically focusing on codeword stabilized (CWS) codes with entanglement assistance. Notably, we utilize the isotropic subgroup of the CWS group and the set of word operators of a CWS-type quantum code to derive an upper bound on the minimum distance. Furthermore, this characterization can be incorporated into the associated distance enumerators, enabling us to construct semidefinite constraints that lead to SDP bounds on the minimum distance or size of CWS-type quantum codes. We illustrate several instances where SDP bounds outperform LP bounds, and there are even cases where LP fails to yield meaningful results, while SDP consistently provides tight and relevant bounds. Finally, we also provide interpretations of the Shor-Laflamme weight enumerators and shadow enumerators for codeword stabilized codes, enhancing our understanding of quantum codes.
In this paper we study the convergence of a fully discrete Crank-Nicolson Galerkin scheme for the initial value problem associated with the fractional Korteweg-de Vries (KdV) equation, which involves the fractional Laplacian and non-linear convection terms. Our proof relies on the Kato type local smoothing effect to estimate the localized $H^{\alpha/2}$-norm of the approximated solution, where $\alpha \in [1,2)$. We demonstrate that the scheme converges strongly in $L^2(0,T;L^2_{loc}(\mathbb{R}))$ to a weak solution of the fractional KdV equation provided the initial data in $L^2(\mathbb{R})$. Assuming the initial data is sufficiently regular, we obtain the rate of convergence for the numerical scheme. Finally, the theoretical convergence rates are justified numerically through various numerical illustrations.
In this article, the stabilizer free weak Galerkin (SFWG) finite element method is applied to the Ciarlet-Raviart mixed form of the Biharmonic equation. We utilize the SFWG solutions of the second elliptic problems to define projection operators, build error equations, and further derive the error estimates. Finally, numerical examples support the results reached by the theory.
This paper presents the reduced biquaternion mixed least squares and total least squares (RBMTLS) method for solving an overdetermined system $AX \approx B$ in the reduced biquaternion algebra. The RBMTLS method is suitable when matrix $B$ and a few columns of matrix $A$ contain errors. By examining real representations of reduced biquaternion matrices, we investigate the conditions for the existence and uniqueness of the real RBMTLS solution and derive an explicit expression for the real RBMTLS solution. The proposed technique covers two special cases: the reduced biquaternion total least squares (RBTLS) method and the reduced biquaternion least squares (RBLS) method. Furthermore, the developed method is also used to find the best approximate solution to $AX \approx B$ over a complex field. Lastly, a numerical example is presented to support our findings.
The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.
Nowadays, deep-learning image coding solutions have shown similar or better compression efficiency than conventional solutions based on hand-crafted transforms and spatial prediction techniques. These deep-learning codecs require a large training set of images and a training methodology to obtain a suitable model (set of parameters) for efficient compression. The training is performed with an optimization algorithm which provides a way to minimize the loss function. Therefore, the loss function plays a key role in the overall performance and includes a differentiable quality metric that attempts to mimic human perception. The main objective of this paper is to study the perceptual impact of several image quality metrics that can be used in the loss function of the training process, through a crowdsourcing subjective image quality assessment study. From this study, it is possible to conclude that the choice of the quality metric is critical for the perceptual performance of the deep-learning codec and that can vary depending on the image content.
We investigate the use of multilevel Monte Carlo (MLMC) methods for estimating the expectation of discretized random fields. Specifically, we consider a setting in which the input and output vectors of the numerical simulators have inconsistent dimensions across the multilevel hierarchy. This requires the introduction of grid transfer operators borrowed from multigrid methods. Starting from a simple 1D illustration, we demonstrate numerically that the resulting MLMC estimator deteriorates the estimation of high-frequency components of the discretized expectation field compared to a Monte Carlo (MC) estimator. By adapting mathematical tools initially developed for multigrid methods, we perform a theoretical spectral analysis of the MLMC estimator of the expectation of discretized random fields, in the specific case of linear, symmetric and circulant simulators. This analysis provides a spectral decomposition of the variance into contributions associated with each scale component of the discretized field. We then propose improved MLMC estimators using a filtering mechanism similar to the smoothing process of multigrid methods. The filtering operators improve the estimation of both the small- and large-scale components of the variance, resulting in a reduction of the total variance of the estimator. These improvements are quantified for the specific class of simulators considered in our spectral analysis. The resulting filtered MLMC (F-MLMC) estimator is applied to the problem of estimating the discretized variance field of a diffusion-based covariance operator, which amounts to estimating the expectation of a discretized random field. The numerical experiments support the conclusions of the theoretical analysis even with non-linear simulators, and demonstrate the improvements brought by the proposed F-MLMC estimator compared to both a crude MC and an unfiltered MLMC estimator.