This paper presents the reduced biquaternion mixed least squares and total least squares (RBMTLS) method for solving an overdetermined system $AX \approx B$ in the reduced biquaternion algebra. The RBMTLS method is suitable when matrix $B$ and a few columns of matrix $A$ contain errors. By examining real representations of reduced biquaternion matrices, we investigate the conditions for the existence and uniqueness of the real RBMTLS solution and derive an explicit expression for the real RBMTLS solution. The proposed technique covers two special cases: the reduced biquaternion total least squares (RBTLS) method and the reduced biquaternion least squares (RBLS) method. Furthermore, the developed method is also used to find the best approximate solution to $AX \approx B$ over a complex field. Lastly, a numerical example is presented to support our findings.
A well-balanced second-order finite volume scheme is proposed and analyzed for a 2 X 2 system of non-linear partial differential equations which describes the dynamics of growing sandpiles created by a vertical source on a flat, bounded rectangular table in multiple dimensions. To derive a second-order scheme, we combine a MUSCL type spatial reconstruction with strong stability preserving Runge-Kutta time stepping method. The resulting scheme is ensured to be well-balanced through a modified limiting approach that allows the scheme to reduce to well-balanced first-order scheme near the steady state while maintaining the second-order accuracy away from it. The well-balanced property of the scheme is proven analytically in one dimension and demonstrated numerically in two dimensions. Additionally, numerical experiments reveal that the second-order scheme reduces finite time oscillations, takes fewer time iterations for achieving the steady state and gives sharper resolutions of the physical structure of the sandpile, as compared to the existing first-order schemes of the literature.
Lawson's iteration is a classical and effective method for solving the linear (polynomial) minimax approximation in the complex plane. Extension of Lawson's iteration for the rational minimax approximation with both computationally high efficiency and theoretical guarantee is challenging. A recent work [L.-H. Zhang, L. Yang, W. H. Yang and Y.-N. Zhang, A convex dual programming for the rational minimax approximation and Lawson's iteration, 2023, arxiv.org/pdf/2308.06991v1] reveals that Lawson's iteration can be viewed as a method for solving the dual problem of the original rational minimax approximation, and a new type of Lawson's iteration was proposed. Such a dual problem is guaranteed to obtain the original minimax solution under Ruttan's sufficient condition, and numerically, the proposed Lawson's iteration was observed to converge monotonically with respect to the dual objective function. In this paper, we perform theoretical convergence analysis for Lawson's iteration for both the linear and rational minimax approximations. In particular, we show that (i) for the linear minimax approximation, the near-optimal Lawson exponent $\beta$ in Lawson's iteration is $\beta=1$, and (ii) for the rational minimax approximation, the proposed Lawson's iteration converges monotonically with respect to the dual objective function for any sufficiently small $\beta>0$, and the convergent solution fulfills the complementary slackness: all nodes associated with positive weights achieve the maximum error.
The paper considers the convergence of the complex block Jacobi diagonalization methods under the large set of the generalized serial pivot strategies. The global convergence of the block methods for Hermitian, normal and $J$-Hermitian matrices is proven. In order to obtain the convergence results for the block methods that solve other eigenvalue problems, such as the generalized eigenvalue problem, we consider the convergence of a general block iterative process which uses the complex block Jacobi annihilators and operators.
Semi-simplicial and semi-cubical sets are commonly defined as presheaves over respectively, the semi-simplex or semi-cube category. Homotopy Type Theory then popularized an alternative definition, where the set of n-simplices or n-cubes are instead regrouped into the families of the fibers over their faces, leading to a characterization we call indexed. Moreover, it is known that semi-simplicial and semi-cubical sets are related to iterated Reynolds parametricity, respectively in its unary and binary variants. We exploit this correspondence to develop an original uniform indexed definition of both augmented semi-simplicial and semi-cubical sets, and fully formalize it in Coq.
This paper is concerned with the multi-frequency factorization method for imaging the support of a wave-number-dependent source function. It is supposed that the source function is given by the inverse Fourier transform of some time-dependent source with a priori given radiating period. Using the multi-frequency far-field data at a fixed observation direction, we provide a computational criterion for characterizing the smallest strip containing the support and perpendicular to the observation direction. The far-field data from sparse observation directions can be used to recover a $\Theta$-convex polygon of the support. The inversion algorithm is proven valid even with multi-frequency near-field data in three dimensions. The connections to time-dependent inverse source problems are discussed in the near-field case. Numerical tests in both two and three dimensions are implemented to show effectiveness and feasibility of the approach. This paper provides numerical analysis for a frequency-domain approach to recover the support of an admissible class of time-dependent sources.
Laguerre spectral approximations play an important role in the development of efficient algorithms for problems in unbounded domains. In this paper, we present a comprehensive convergence rate analysis of Laguerre spectral approximations for analytic functions. By exploiting contour integral techniques from complex analysis, we prove that Laguerre projection and interpolation methods of degree $n$ converge at the root-exponential rate $O(\exp(-2\rho\sqrt{n}))$ with $\rho>0$ when the underlying function is analytic inside and on a parabola with focus at the origin and vertex at $z=-\rho^2$. As far as we know, this is the first rigorous proof of root-exponential convergence of Laguerre approximations for analytic functions. Several important applications of our analysis are also discussed, including Laguerre spectral differentiations, Gauss-Laguerre quadrature rules, the scaling factor and the Weeks method for the inversion of Laplace transform, and some sharp convergence rate estimates are derived. Numerical experiments are presented to verify the theoretical results.
In this paper we consider a nonlinear poroelasticity model that describes the quasi-static mechanical behaviour of a fluid-saturated porous medium whose permeability depends on the divergence of the displacement. Such nonlinear models are typically used to study biological structures like tissues, organs, cartilage and bones, which are known for a nonlinear dependence of their permeability/hydraulic conductivity on solid dilation. We formulate (extend to the present situation) one of the most popular splitting schemes, namely the fixed-stress split method for the iterative solution of the coupled problem. The method is proven to converge linearly for sufficiently small time steps under standard assumptions. The error contraction factor then is strictly less than one, independent of the Lam\'{e} parameters, Biot and storage coefficients if the hydraulic conductivity is a strictly positive, bounded and Lipschitz-continuous function.
We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.
The paper introduces a new meshfree pseudospectral method based on Gaussian radial basis functions (RBFs) collocation to solve fractional Poisson equations. Hypergeometric functions are used to represent the fractional Laplacian of Gaussian RBFs, enabling an efficient computation of stiffness matrix entries. Unlike existing RBF-based methods, our approach ensures a Toeplitz structure in the stiffness matrix with equally spaced RBF centers, enabling efficient matrix-vector multiplications using fast Fourier transforms. We conduct a comprehensive study on the shape parameter selection, addressing challenges related to ill-conditioning and numerical stability. The main contribution of our work includes rigorous stability analysis and error estimates of the Gaussian RBF collocation method, representing a first attempt at the rigorous analysis of RBF-based methods for fractional PDEs to the best of our knowledge. We conduct numerical experiments to validate our analysis and provide practical insights for implementation.
We present and analyze an algorithm designed for addressing vector-valued regression problems involving possibly infinite-dimensional input and output spaces. The algorithm is a randomized adaptation of reduced rank regression, a technique to optimally learn a low-rank vector-valued function (i.e. an operator) between sampled data via regularized empirical risk minimization with rank constraints. We propose Gaussian sketching techniques both for the primal and dual optimization objectives, yielding Randomized Reduced Rank Regression (R4) estimators that are efficient and accurate. For each of our R4 algorithms we prove that the resulting regularized empirical risk is, in expectation w.r.t. randomness of a sketch, arbitrarily close to the optimal value when hyper-parameteres are properly tuned. Numerical expreriments illustrate the tightness of our bounds and show advantages in two distinct scenarios: (i) solving a vector-valued regression problem using synthetic and large-scale neuroscience datasets, and (ii) regressing the Koopman operator of a nonlinear stochastic dynamical system.