亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

(Hyper)Graph decomposition is a family of problems that aim to break down large (hyper)graphs into smaller sub(hyper)graphs for easier analysis. The importance of this lies in its ability to enable efficient computation on large and complex (hyper)graphs, such as social networks, chemical compounds, and computer networks. This dissertation explores several types of (hyper)graph decomposition problems, including graph partitioning, hypergraph partitioning, local graph clustering, process mapping, and signed graph clustering. Our main focus is on streaming algorithms, local algorithms and multilevel algorithms. In terms of streaming algorithms, we make contributions with highly efficient and effective algorithms for (hyper)graph partitioning and process mapping. In terms of local algorithms, we propose sub-linear algorithms which are effective in detecting high-quality local communities around a given seed node in a graph based on the distribution of a given motif. In terms of multilevel algorithms, we engineer high-quality multilevel algorithms for process mapping and signed graph clustering. We provide a thorough discussion of each algorithm along with experimental results demonstrating their superiority over existing state-of-the-art techniques. The results show that the proposed algorithms achieve improved performance and better solutions in various metrics, making them highly promising for practical applications. Overall, this dissertation showcases the effectiveness of advanced combinatorial algorithmic techniques in solving challenging (hyper)graph decomposition problems.

相關內容

The hyperbolicity of a graph, informally, measures how close a graph is (metrically) to a tree. Hence, it is intuitively similar to treewidth, but the measures are formally incomparable. Motivated by the broad study of algorithms and separators on planar graphs and their relation to treewidth, we initiate the study of planar graphs of bounded hyperbolicity. Our main technical contribution is a novel balanced separator theorem for planar $\delta$-hyperbolic graphs that is substantially stronger than the classic planar separator theorem. For any fixed $\delta \geq 0$, we can find balanced separator that induces either a single geodesic (shortest) path or a single geodesic cycle in the graph. An important advantage of our separator is that the union of our separator (vertex set $Z$) with any subset of the connected components of $G - Z$ induces again a planar $\delta$-hyperbolic graph, which would not be guaranteed with an arbitrary separator. Our construction runs in near-linear time and guarantees that size of separator is $\mathrm{poly}(\delta) \cdot \log n$. As an application of our separator theorem and its strong properties, we obtain two novel approximation schemes on planar $\delta$-hyperbolic graphs. We prove that Maximum Independent Set and the Traveling Salesperson problem have a near-linear time FPTAS for any constant $\delta$, running in $n\, \mathrm{polylog}(n) \cdot 2^{\mathcal{O}(\delta^2)} \cdot \varepsilon^{-\mathcal{O}(\delta)}$ time. We also show that our approximation scheme for Maximum Independent Set has essentially the best possible running time under the Exponential Time Hypothesis (ETH). This immediately follows from our third contribution: we prove that Maximum Independent Set has no $n^{o(\delta)}$-time algorithm on planar $\delta$-hyperbolic graphs, unless ETH fails.

We study worst-case-growth-rate-optimal (GROW) e-statistics for hypothesis testing between two group models. It is known that under a mild condition on the action of the underlying group G on the data, there exists a maximally invariant statistic. We show that among all e-statistics, invariant or not, the likelihood ratio of the maximally invariant statistic is GROW, both in the absolute and in the relative sense, and that an anytime-valid test can be based on it. The GROW e-statistic is equal to a Bayes factor with a right Haar prior on G. Our treatment avoids nonuniqueness issues that sometimes arise for such priors in Bayesian contexts. A crucial assumption on the group G is its amenability, a well-known group-theoretical condition, which holds, for instance, in scale-location families. Our results also apply to finite-dimensional linear regression.

Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI, i.e., predicting the judgment of the case in terms of case fact description. Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems. Thus, it is worthwhile to explore the utilization of precedents in the LJP. Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task. These can be broken down into two categories: large language models (LLMs) and domain-specific models. LLMs are capable of interpreting and generating complex natural language, while domain models are efficient in learning task-specific information. In this paper, we propose the precedent-enhanced LJP framework (PLJP), a system that leverages the strength of both LLM and domain models in the context of precedents. Specifically, the domain models are designed to provide candidate labels and find the proper precedents efficiently, and the large models will make the final prediction with an in-context precedents comprehension. Experiments on the real-world dataset demonstrate the effectiveness of our PLJP. Moreover, our work shows a promising direction for LLM and domain-model collaboration that can be generalized to other vertical domains.

Evolutionary Computation (EC) has emerged as a powerful field of Artificial Intelligence, inspired by nature's mechanisms of gradual development. However, EC approaches often face challenges such as stagnation, diversity loss, computational complexity, population initialization, and premature convergence. To overcome these limitations, researchers have integrated learning algorithms with evolutionary techniques. This integration harnesses the valuable data generated by EC algorithms during iterative searches, providing insights into the search space and population dynamics. Similarly, the relationship between evolutionary algorithms and Machine Learning (ML) is reciprocal, as EC methods offer exceptional opportunities for optimizing complex ML tasks characterized by noisy, inaccurate, and dynamic objective functions. These hybrid techniques, known as Evolutionary Machine Learning (EML), have been applied at various stages of the ML process. EC techniques play a vital role in tasks such as data balancing, feature selection, and model training optimization. Moreover, ML tasks often require dynamic optimization, for which Evolutionary Dynamic Optimization (EDO) is valuable. This paper presents the first comprehensive exploration of reciprocal integration between EDO and ML. The study aims to stimulate interest in the evolutionary learning community and inspire innovative contributions in this domain.

Mutually unbiased bases (MUBs) are highly symmetric bases on complex Hilbert spaces, and the corresponding rank-1 projective measurements are ubiquitous in quantum information theory. In this work, we study a recently introduced generalization of MUBs called mutually unbiased measurements (MUMs). These measurements inherit the essential property of complementarity from MUBs, but the Hilbert space dimension is no longer required to match the number of outcomes. This operational complementarity property renders MUMs highly useful for device-independent quantum information processing. It has been shown that MUMs are strictly more general than MUBs. In this work we provide a complete proof of the characterization of MUMs that are direct sums of MUBs. We then proceed to construct new examples of MUMs that are not direct sums of MUBs. A crucial technical tool for these construction is a correspondence with quaternionic Hadamard matrices, which allows us to map known examples of such matrices to MUMs that are not direct sums of MUBs. Furthermore, we show that -- in stark contrast with MUBs -- the number of MUMs for a fixed outcome number is unbounded. Next, we focus on the use of MUMs in quantum communication. We demonstrate how any pair of MUMs with d outcomes defines a d-dimensional superdense coding protocol. Using MUMs that are not direct sums of MUBs, we disprove a recent conjecture due to Nayak and Yuen on the rigidity of superdense coding for infinitely many dimensions. The superdense coding protocols arising in the refutation reveal how shared entanglement may be used in a manner heretofore unknown.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.

Graph neural networks provide a powerful toolkit for embedding real-world graphs into low-dimensional spaces according to specific tasks. Up to now, there have been several surveys on this topic. However, they usually lay emphasis on different angles so that the readers can not see a panorama of the graph neural networks. This survey aims to overcome this limitation, and provide a comprehensive review on the graph neural networks. First of all, we provide a novel taxonomy for the graph neural networks, and then refer to up to 400 relevant literatures to show the panorama of the graph neural networks. All of them are classified into the corresponding categories. In order to drive the graph neural networks into a new stage, we summarize four future research directions so as to overcome the facing challenges. It is expected that more and more scholars can understand and exploit the graph neural networks, and use them in their research community.

We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.

北京阿比特科技有限公司