亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a scenario of cooperative task servicing, with a team of heterogeneous robots with different maximum speeds and communication radii, in charge of keeping the network intermittently connected. We abstract the task locations into a $1D$ cycle graph that is traversed by the communicating robots, and we discuss intermittent communication strategies so that each task location is periodically visited, with a worst--case revisiting time. Robots move forward and backward along the cycle graph, exchanging data with their previous and next neighbors when they meet, and updating their region boundaries. Asymptotically, each robot is in charge of a region of the cycle graph, depending on its capabilities. The method is distributed, and robots only exchange data when they meet.

相關內容

Generalized Category Discovery (GCD) is a pragmatic and challenging open-world task, which endeavors to cluster unlabeled samples from both novel and old classes, leveraging some labeled data of old classes. Given that knowledge learned from old classes is not fully transferable to new classes, and that novel categories are fully unlabeled, GCD inherently faces intractable problems, including imbalanced classification performance and inconsistent confidence between old and new classes, especially in the low-labeling regime. Hence, some annotations of new classes are deemed necessary. However, labeling new classes is extremely costly. To address this issue, we take the spirit of active learning and propose a new setting called Active Generalized Category Discovery (AGCD). The goal is to improve the performance of GCD by actively selecting a limited amount of valuable samples for labeling from the oracle. To solve this problem, we devise an adaptive sampling strategy, which jointly considers novelty, informativeness and diversity to adaptively select novel samples with proper uncertainty. However, owing to the varied orderings of label indices caused by the clustering of novel classes, the queried labels are not directly applicable to subsequent training. To overcome this issue, we further propose a stable label mapping algorithm that transforms ground truth labels to the label space of the classifier, thereby ensuring consistent training across different active selection stages. Our method achieves state-of-the-art performance on both generic and fine-grained datasets. Our code is available at //github.com/mashijie1028/ActiveGCD

We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erd\H{o}s-R\'{e}nyi random graph over $n$ vertices with edge density $q$. Under the alternative, there exists a planted $k_{\mathsf{R}} \times k_{\mathsf{L}}$ bipartite subgraph with edge density $p>q$. We characterize the statistical and computational barriers for this problem. Specifically, we derive information-theoretic lower bounds, and design and analyze optimal algorithms matching those bounds, in both the dense regime, where $p,q = \Theta\left(1\right)$, and the sparse regime where $p,q = \Theta\left(n^{-\alpha}\right), \alpha \in \left(0,2\right]$. We also consider the problem of testing in polynomial-time. As is customary in similar structured high-dimensional problems, our model undergoes an "easy-hard-impossible" phase transition and computational constraints penalize the statistical performance. To provide an evidence for this statistical computational gap, we prove computational lower bounds based on the low-degree conjecture, and show that the class of low-degree polynomials algorithms fail in the conjecturally hard region.

Current clustering priors for deep latent variable models (DLVMs) require defining the number of clusters a-priori and are susceptible to poor initializations. Addressing these deficiencies could greatly benefit deep learning-based scRNA-seq analysis by performing integration and clustering simultaneously. We adapt the VampPrior (Tomczak & Welling, 2018) into a Dirichlet process Gaussian mixture model, resulting in the VampPrior Mixture Model (VMM), a novel prior for DLVMs. We propose an inference procedure that alternates between variational inference and Empirical Bayes to cleanly distinguish variational and prior parameters. Using the VMM in a Variational Autoencoder attains highly competitive clustering performance on benchmark datasets. Augmenting scVI (Lopez et al., 2018), a popular scRNA-seq integration method, with the VMM significantly improves its performance and automatically arranges cells into biologically meaningful clusters.

Synthetic data is essential for assessing clustering techniques, complementing and extending real data, and allowing for more complete coverage of a given problem's space. In turn, synthetic data generators have the potential of creating vast amounts of data -- a crucial activity when real-world data is at premium -- while providing a well-understood generation procedure and an interpretable instrument for methodically investigating cluster analysis algorithms. Here, we present Clugen, a modular procedure for synthetic data generation, capable of creating multidimensional clusters supported by line segments using arbitrary distributions. Clugen is open source, comprehensively unit tested and documented, and is available for the Python, R, Julia, and MATLAB/Octave ecosystems. We demonstrate that our proposal can produce rich and varied results in various dimensions, is fit for use in the assessment of clustering algorithms, and has the potential to be a widely used framework in diverse clustering-related research tasks.

Survival models capture the relationship between an accumulating hazard and the occurrence of a singular event stimulated by that accumulation. When the model for the hazard is sufficiently flexible survival models can accommodate a wide range of behaviors. If the hazard model is less flexible, for example when it is constrained by an external physical process, then the resulting survival model can be much too rigid. In this paper I introduce a modified survival model that generalizes the relationship between accumulating hazard and event occurrence with particular emphasis on capturing thresholding behavior. Finally I demonstrate the utility of this approach on a physiological application.

Artificial intelligence, particularly through recent advancements in deep learning, has achieved exceptional performances in many tasks in fields such as natural language processing and computer vision. In addition to desirable evaluation metrics, a high level of interpretability is often required for these models to be reliably utilized. Therefore, explanations that offer insight into the process by which a model maps its inputs onto its outputs are much sought-after. Unfortunately, the current black box nature of machine learning models is still an unresolved issue and this very nature prevents researchers from learning and providing explicative descriptions for a model's behavior and final predictions. In this work, we propose a novel framework utilizing Adversarial Inverse Reinforcement Learning that can provide global explanations for decisions made by a Reinforcement Learning model and capture intuitive tendencies that the model follows by summarizing the model's decision-making process.

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way---just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at forums.fast.ai. Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here. See related articles at //explained.ai

北京阿比特科技有限公司