亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Previous efforts on reconfigurable analog circuits mostly focused on specialized analog circuits, produced through careful co-design, or on highly reconfigurable, but relatively resource inefficient, accelerators that implement analog compute paradigms. This work deals with an intermediate point in the design space: Specialized reconfigurable circuits for analog compute paradigms. This class of circuits requires new methodologies for performing co-design, as prior techniques are typically highly specialized to conventional circuit classes (e.g., filters, ADCs). In this context, we present Ark, a programming language for describing analog compute paradigms. Ark enables progressive incorporation of analog behaviors into computations, and deploys a validator and dynamical system compiler for verifying and simulating computations. We use Ark to codify the design space for three different exemplary circuit design problems, and demonstrate that Ark helps exploring design trade-offs and evaluating the impact of nonidealities to the computation.

相關內容

設計是對現有狀的一種重新認識和打破重組的過程,設計讓一切變得更美。

We propose a learning dynamics to model how strategic agents repeatedly play a continuous game while relying on an information platform to learn an unknown payoff-relevant parameter. In each time step, the platform updates a belief estimate of the parameter based on players' strategies and realized payoffs using Bayes's rule. Then, players adopt a generic learning rule to adjust their strategies based on the updated belief. We present results on the convergence of beliefs and strategies and the properties of convergent fixed points of the dynamics. We obtain sufficient and necessary conditions for the existence of globally stable fixed points. We also provide sufficient conditions for the local stability of fixed points. These results provide an approach to analyzing the long-term outcomes that arise from the interplay between Bayesian belief learning and strategy learning in games, and enable us to characterize conditions under which learning leads to a complete information equilibrium.

Researchers in explainable artificial intelligence have developed numerous methods for helping users understand the predictions of complex supervised learning models. By contrast, explaining the $\textit{uncertainty}$ of model outputs has received relatively little attention. We adapt the popular Shapley value framework to explain various types of predictive uncertainty, quantifying each feature's contribution to the conditional entropy of individual model outputs. We consider games with modified characteristic functions and find deep connections between the resulting Shapley values and fundamental quantities from information theory and conditional independence testing. We outline inference procedures for finite sample error rate control with provable guarantees, and implement efficient algorithms that perform well in a range of experiments on real and simulated data. Our method has applications to covariate shift detection, active learning, feature selection, and active feature-value acquisition.

The valence analysis of speakers' utterances or written posts helps to understand the activation and variations of the emotional state throughout the conversation. More recently, the concept of Emotion Carriers (EC) has been introduced to explain the emotion felt by the speaker and its manifestations. In this work, we investigate the natural inter-dependency of valence and ECs via a multi-task learning approach. We experiment with Pre-trained Language Models (PLM) for single-task, two-step, and joint settings for the valence and EC prediction tasks. We compare and evaluate the performance of generative (GPT-2) and discriminative (BERT) architectures in each setting. We observed that providing the ground truth label of one task improves the prediction performance of the models in the other task. We further observed that the discriminative model achieves the best trade-off of valence and EC prediction tasks in the joint prediction setting. As a result, we attain a single model that performs both tasks, thus, saving computation resources at training and inference times.

Making causal inferences from observational studies can be challenging when confounders are missing not at random. In such cases, identifying causal effects is often not guaranteed. Motivated by a real example, we consider a treatment-independent missingness assumption under which we establish the identification of causal effects when confounders are missing not at random. We propose a weighted estimating equation (WEE) approach for estimating model parameters and introduce three estimators for the average causal effect, based on regression, propensity score weighting, and doubly robust estimation. We evaluate the performance of these estimators through simulations, and provide a real data analysis to illustrate our proposed method.

While deep learning techniques have become extremely popular for solving a broad range of optimization problems, methods to enforce hard constraints during optimization, particularly on deep neural networks, remain underdeveloped. Inspired by the rich literature on meshless interpolation and its extension to spectral collocation methods in scientific computing, we develop a series of approaches for enforcing hard constraints on neural fields, which we refer to as Constrained Neural Fields (CNF). The constraints can be specified as a linear operator applied to the neural field and its derivatives. We also design specific model representations and training strategies for problems where standard models may encounter difficulties, such as conditioning of the system, memory consumption, and capacity of the network when being constrained. Our approaches are demonstrated in a wide range of real-world applications. Additionally, we develop a framework that enables highly efficient model and constraint specification, which can be readily applied to any downstream task where hard constraints need to be explicitly satisfied during optimization.

Convergence and compactness properties of approximate solutions to elliptic partial differential computed with the hybridized discontinuous Galerkin (HDG) are established. While it is known that solutions computed using the HDG scheme converge at optimal rates to smooth solutions, this does not establish the stability of the method or convergence to solutions with minimal regularity. The compactness and convergence results show that the HDG scheme can be utilized for the solution of nonlinear problems and linear problems with non-smooth coefficients on domains with reentrant corners.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司