亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Physical simulations based on partial differential equations typically generate spatial fields results, which are utilized to calculate specific properties of a system for engineering design and optimization. Due to the intensive computational burden of the simulations, a surrogate model mapping the low-dimensional inputs to the spatial fields are commonly built based on a relatively small dataset. To resolve the challenge of predicting the whole spatial field, the popular linear model of coregionalization (LMC) can disentangle complicated correlations within the high-dimensional spatial field outputs and deliver accurate predictions. However, LMC fails if the spatial field cannot be well approximated by a linear combination of base functions with latent processes. In this paper, we present the Extended Linear Model of Coregionalization (E-LMC) by introducing an invertible neural network to linearize the highly complex and nonlinear spatial fields so that the LMC can easily generalize to nonlinear problems while preserving the traceability and scalability. Several real-world applications demonstrate that E-LMC can exploit spatial correlations effectively, showing a maximum improvement of about 40% over the original LMC and outperforming the other state-of-the-art spatial field models.

相關內容

The paper proposes a decoupled numerical scheme of the time-dependent Ginzburg-Landau equations under temporal gauge. For the order parameter and the magnetic potential, the discrete scheme adopts the second type Ned${\rm \acute{e}}$lec element and the linear element for spatial discretization, respectively, and a fully linearized backward Euler method and the first order exponential time differencing method for time discretization, respectively. The maximum bound principle of the order parameter and the energy dissipation law in the discrete sense are proved for this finite element-based scheme. This allows the application of the adaptive time stepping method which can significantly speed up long-time simulations compared to existing numerical schemes, especially for superconductors with complicated shapes. The error estimate is rigorously established in the fully discrete sense. Numerical examples verify the theoretical results of the proposed scheme and demonstrate the vortex motions of superconductors in an external magnetic field.

In this paper, we investigate the Gaussian graphical model inference problem in a novel setting that we call erose measurements, referring to irregularly measured or observed data. For graphs, this results in different node pairs having vastly different sample sizes which frequently arises in data integration, genomics, neuroscience, and sensor networks. Existing works characterize the graph selection performance using the minimum pairwise sample size, which provides little insights for erosely measured data, and no existing inference method is applicable. We aim to fill in this gap by proposing the first inference method that characterizes the different uncertainty levels over the graph caused by the erose measurements, named GI-JOE (Graph Inference when Joint Observations are Erose). Specifically, we develop an edge-wise inference method and an affiliated FDR control procedure, where the variance of each edge depends on the sample sizes associated with corresponding neighbors. We prove statistical validity under erose measurements, thanks to careful localized edge-wise analysis and disentangling the dependencies across the graph. Finally, through simulation studies and a real neuroscience data example, we demonstrate the advantages of our inference methods for graph selection from erosely measured data.

A simple generative model based on a continuous-time normalizing flow between any pair of base and target probability densities is proposed. The velocity field of this flow is inferred from the probability current of a time-dependent density that interpolates between the base and the target in finite time. Unlike conventional normalizing flow inference methods based the maximum likelihood principle, which require costly backpropagation through ODE solvers, our interpolant approach leads to a simple quadratic loss for the velocity itself which is expressed in terms of expectations that are readily amenable to empirical estimation. The flow can be used to generate samples from either the base or target, and to estimate the likelihood at any time along the interpolant. In addition, the flow can be optimized to minimize the path length of the interpolant density, thereby paving the way for building optimal transport maps. The approach is also contextualized in its relation to diffusions. In particular, in situations where the base is a Gaussian density, we show that the velocity of our normalizing flow can also be used to construct a diffusion model to sample the target as well as estimating its score. This allows one to map methods based on stochastic differential equations to those using ordinary differential equations, simplifying the mechanics of the model, but capturing equivalent dynamics. Benchmarking on density estimation tasks illustrates that the learned flow can match and surpass maximum likelihood continuous flows at a fraction of the conventional ODE training costs.

This paper considers the estimation and inference of the low-rank components in high-dimensional matrix-variate factor models, where each dimension of the matrix-variates ($p \times q$) is comparable to or greater than the number of observations ($T$). We propose an estimation method called $\alpha$-PCA that preserves the matrix structure and aggregates mean and contemporary covariance through a hyper-parameter $\alpha$. We develop an inferential theory, establishing consistency, the rate of convergence, and the limiting distributions, under general conditions that allow for correlations across time, rows, or columns of the noise. We show both theoretical and empirical methods of choosing the best $\alpha$, depending on the use-case criteria. Simulation results demonstrate the adequacy of the asymptotic results in approximating the finite sample properties. The $\alpha$-PCA compares favorably with the existing ones. Finally, we illustrate its applications with a real numeric data set and two real image data sets. In all applications, the proposed estimation procedure outperforms previous methods in the power of variance explanation using out-of-sample 10-fold cross-validation.

Due to their disordered structure, glasses present a unique challenge in predicting the composition-property relationships. Recently, several attempts have been made to predict the glass properties using machine learning techniques. However, these techniques have the limitations, namely, (i) predictions are limited to the components that are present in the original dataset, and (ii) predictions towards the extreme values of the properties, important regions for new materials discovery, are not very reliable due to the sparse datapoints in this region. To address these challenges, here we present a low complexity neural network (LCNN) that provides improved performance in predicting the properties of oxide glasses. In addition, we combine the LCNN with physical and chemical descriptors that allow the development of universal models that can provide predictions for components beyond the training set. By training on a large dataset (~50000) of glass components, we show the LCNN outperforms state-of-the-art algorithms such as XGBoost. In addition, we interpret the LCNN models using Shapely additive explanations to gain insights into the role played by the descriptors in governing the property. Finally, we demonstrate the universality of the LCNN models by predicting the properties for glasses with new components that were not present in the original training set. Altogether, the present approach provides a promising direction towards accelerated discovery of novel glass compositions.

De-noising plays a crucial role in the post-processing of spectra. Machine learning-based methods show good performance in extracting intrinsic information from noisy data, but often require a high-quality training set that is typically inaccessible in real experimental measurements. Here, using spectra in angle-resolved photoemission spectroscopy (ARPES) as an example, we develop a de-noising method for extracting intrinsic spectral information without the need for a training set. This is possible as our method leverages the self-correlation information of the spectra themselves. It preserves the intrinsic energy band features and thus facilitates further analysis and processing. Moreover, since our method is not limited by specific properties of the training set compared to previous ones, it may well be extended to other fields and application scenarios where obtaining high-quality multidimensional training data is challenging.

Neural networks are known to exploit spurious artifacts (or shortcuts) that co-occur with a target label, exhibiting heuristic memorization. On the other hand, networks have been shown to memorize training examples, resulting in example-level memorization. These kinds of memorization impede generalization of networks beyond their training distributions. Detecting such memorization could be challenging, often requiring researchers to curate tailored test sets. In this work, we hypothesize -- and subsequently show -- that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization. We quantify the diversity in the neural activations through information-theoretic measures and find support for our hypothesis on experiments spanning several natural language and vision tasks. Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabeled in-distribution examples. Lastly, we demonstrate the utility of our findings for the problem of model selection. The associated code and other resources for this work are available at //linktr.ee/InformationMeasures .

Convolutional neural networks (CNNs) provide flexible function approximations for a wide variety of applications when the input variables are in the form of images or spatial data. Although CNNs often outperform traditional statistical models in prediction accuracy, statistical inference, such as estimating the effects of covariates and quantifying the prediction uncertainty, is not trivial due to the highly complicated model structure and overparameterization. To address this challenge, we propose a new Bayes approach by embedding CNNs within the generalized linear model (GLM) framework. We use extracted nodes from the last hidden layer of CNN with Monte Carlo dropout as informative covariates in GLM. This improves accuracy in prediction and regression coefficient inference, allowing for the interpretation of coefficient and uncertainty quantification. By fitting ensemble GLMs across multiple realizations from Monte Carlo dropout, we can fully account for uncertainties in model estimation. We apply our methods to simulated and real data examples, including non-Gaussian spatial data, brain tumor image data, and fMRI data. The algorithm can be broadly applicable to image regressions or correlated data analysis by enabling accurate Bayesian inference quickly.

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.

Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.

北京阿比特科技有限公司