Causal intervention is an essential tool in causal inference. It is axiomatized under the rules of do-calculus in the case of structure causal models. We provide simple axiomatizations for families of probability distributions to be different types of interventional distributions. Our axiomatizations neatly lead to a simple and clear theory of causality that has several advantages: it does not need to make use of any modeling assumptions such as those imposed by structural causal models; it only relies on interventions on single variables; it includes most cases with latent variables and causal cycles; and more importantly, it does not assume the existence of an underlying true causal graph--in fact, a causal graph is a by-product of our theory. We show that, under our axiomatizations, the intervened distributions are Markovian to the defined intervened causal graphs, and an observed joint probability distribution is Markovian to the obtained causal graph; these results are consistent with the case of structural causal models, and as a result, the existing theory of causal inference applies. We also show that a large class of natural structural causal models satisfy the theory presented here.
Value at Risk (VaR) and Conditional Value at Risk (CVaR) have become the most popular measures of market risk in Financial and Insurance fields. However, the estimation of both risk measures is challenging, because it requires the knowledge of the tail of the distribution. Therefore, tools from Extreme Value Theory are usually employed, considering that the tail data follow a Generalized Pareto distribution (GPD). Using the existing relations from the parameters of the baseline distribution and the limit GPD's parameters, we define highly informative priors that incorporate all the information available for the whole set of observations. We show how to perform Metropolis-Hastings (MH) algorithm to estimate VaR and CVaR employing the highly informative priors, in the case of exponential, stable and Gamma distributions. Afterwards, we perform a thorough simulation study to compare the accuracy and precision provided by three different methods. Finally, data from a real example is analyzed to show the practical application of the methods.
The algebraic degree is an important parameter of Boolean functions used in cryptography. When a function in a large number of variables is not given explicitly in algebraic normal form, it might not be feasible to compute its degree. Instead, one can try to estimate the degree using probabilistic tests. We propose a probabilistic test for deciding whether the algebraic degree of a Boolean function $f$ is below a certain value $k$. The test involves picking an affine space of dimension $k$ and testing whether the values on $f$ on that space sum up to zero. If $deg(f)<k$, then $f$ will always pass the test, otherwise it will sometimes pass and sometimes fail the test, depending on which affine space was chosen. The probability of failing the proposed test is closely related to the number of monomials of degree $k$ in a polynomial $g$, averaged over all the polynomials $g$ which are affine equivalent to $f$. We initiate the study of the probability of failing the proposed ``$deg(f)<k$'' test. We show that in the particular case when the degree of $f$ is actually equal to $k$, the probability will be in the interval $(0.288788, 0.5]$, and therefore a small number of runs of the test is sufficient to give, with very high probability, the correct answer. Exact values of this probability for all the polynomials in 8 variables were computed using the representatives listed by Hou and by Langevin and Leander.
Forecasts of multivariate probability distributions are required for a variety of applications. Scoring rules enable the evaluation of forecast accuracy, and comparison between forecasting methods. We propose a theoretical framework for scoring rules for multivariate distributions, which encompasses the existing quadratic score and multivariate continuous ranked probability score. We demonstrate how this framework can be used to generate new scoring rules. In some multivariate contexts, it is a forecast of a level set that is needed, such as a density level set for anomaly detection or the level set of the cumulative distribution as a measure of risk. This motivates consideration of scoring functions for such level sets. For univariate distributions, it is well-established that the continuous ranked probability score can be expressed as the integral over a quantile score. We show that, in a similar way, scoring rules for multivariate distributions can be decomposed to obtain scoring functions for level sets. Using this, we present scoring functions for different types of level set, including density level sets and level sets for cumulative distributions. To compute the scores, we propose a simple numerical algorithm. We perform a simulation study to support our proposals, and we use real data to illustrate usefulness for forecast combining and CoVaR estimation.
Variational regularization is commonly used to solve linear inverse problems, and involves augmenting a data fidelity by a regularizer. The regularizer is used to promote a priori information, and is weighted by a regularization parameter. Selection of an appropriate regularization parameter is critical, with various choices leading to very different reconstructions. Existing strategies such as the discrepancy principle and L-curve can be used to determine a suitable parameter value, but in recent years a supervised machine learning approach called bilevel learning has been employed. Bilevel learning is a powerful framework to determine optimal parameters, and involves solving a nested optimisation problem. While previous strategies enjoy various theoretical results, the well-posedness of bilevel learning in this setting is still a developing field. One necessary property is positivity of the determined regularization parameter. In this work, we provide a new condition that better characterises positivity of optimal regularization parameters than the existing theory. Numerical results verify and explore this new condition for both small and large dimensional problems.
Large-scale administrative or observational datasets are increasingly used to inform decision making. While this effort aims to ground policy in real-world evidence, challenges have arise as that selection bias and other forms of distribution shift often plague observational data. Previous attempts to provide robust inferences have given guarantees depending on a user-specified amount of possible distribution shift (e.g., the maximum KL divergence between the observed and target distributions). However, decision makers will often have additional knowledge about the target distribution which constrains the kind of shifts which are possible. To leverage such information, we proposed a framework that enables statistical inference in the presence of distribution shifts which obey user-specified constraints in the form of functions whose expectation is known under the target distribution. The output is high-probability bounds on the value an estimand takes on the target distribution. Hence, our method leverages domain knowledge in order to partially identify a wide class of estimands. We analyze the computational and statistical properties of methods to estimate these bounds, and show that our method can produce informative bounds on a variety of simulated and semisynthetic tasks.
We consider the problem of learning from data corrupted by underrepresentation bias, where positive examples are filtered from the data at different, unknown rates for a fixed number of sensitive groups. We show that with a small amount of unbiased data, we can efficiently estimate the group-wise drop-out parameters, even in settings where intersectional group membership makes learning each intersectional rate computationally infeasible. Using this estimate for the group-wise drop-out rate, we construct a re-weighting scheme that allows us to approximate the loss of any hypothesis on the true distribution, even if we only observe the empirical error on a biased sample. Finally, we present an algorithm encapsulating this learning and re-weighting process, and we provide strong PAC-style guarantees that, with high probability, our estimate of the risk of the hypothesis over the true distribution will be arbitrarily close to the true risk.
Discourse analysis is an important task because it models intrinsic semantic structures between sentences in a document. Discourse markers are natural representations of discourse in our daily language. One challenge is that the markers as well as pre-defined and human-labeled discourse relations can be ambiguous when describing the semantics between sentences. We believe that a better approach is to use a contextual-dependent distribution over the markers to express discourse information. In this work, we propose to learn a Distributed Marker Representation (DMR) by utilizing the (potentially) unlimited discourse marker data with a latent discourse sense, thereby bridging markers with sentence pairs. Such representations can be learned automatically from data without supervision, and in turn provide insights into the data itself. Experiments show the SOTA performance of our DMR on the implicit discourse relation recognition task and strong interpretability. Our method also offers a valuable tool to understand complex ambiguity and entanglement among discourse markers and manually defined discourse relations.
We present new results on average causal effects in settings with unmeasured exposure-outcome confounding. Our results are motivated by a class of estimands, e.g., frequently of interest in medicine and public health, that are currently not targeted by standard approaches for average causal effects. We recognize these estimands as queries about the average causal effect of an intervening variable. We anchor our introduction of these estimands in an investigation of the role of chronic pain and opioid prescription patterns in the opioid epidemic, and illustrate how conventional approaches will lead unreplicable estimates with ambiguous policy implications. We argue that our altenative effects are replicable and have clear policy implications, and furthermore are non-parametrically identified by the classical frontdoor formula. As an independent contribution, we derive a new semiparametric efficient estimator of the frontdoor formula with a uniform sample boundedness guarantee. This property is unique among previously-described estimators in its class, and we demonstrate superior performance in finite-sample settings. Theoretical results are applied with data from the National Health and Nutrition Examination Survey.
Elliptical distribution is a basic assumption underlying many multivariate statistical methods. For example, in sufficient dimension reduction and statistical graphical models, this assumption is routinely imposed to simplify the data dependence structure. Before applying such methods, we need to decide whether the data are elliptically distributed. Currently existing tests either focus exclusively on spherical distributions, or rely on bootstrap to determine the null distribution, or require specific forms of the alternative distribution. In this paper, we introduce a general nonparametric test for elliptical distribution based on kernel embedding of the probability measure that embodies the two properties that characterize an elliptical distribution: namely, after centering and rescaling, (1) the direction and length of the random vector are independent, and (2) the directional vector is uniformly distributed on the unit sphere. We derive the null asymptotic distribution of the test statistic via von-Mises expansion, develop the sample-level procedure to determine the rejection region, and establish the consistency and validity of the proposed test. We apply our test to a SENIC dataset with and without a transformation aimed to achieve ellipticity.
This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.