亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Autonomous systems, including generative AI, have been adopted faster than previous digital innovations. Their impact on society might as well be more profound, with a radical restructuring of the economy of knowledge and dramatic consequences for social and institutional balances. Different attitudes to control these systems have emerged rooted in the classical pillars of legal systems, proprietary rights, and social responsibility. We show how an illusion of control might be guiding governments and regulators, while autonomous systems might be driving us to inescapable delusion.

相關內容

The advent of edge computing has made real-time intelligent video analytics feasible. Previous works, based on traditional model architecture (e.g., CNN, RNN, etc.), employ various strategies to filter out non-region-of-interest content to minimize bandwidth and computation consumption but show inferior performance in adverse environments. Recently, visual foundation models based on transformers have shown great performance in adverse environments due to their amazing generalization capability. However, they require a large amount of computation power, which limits their applications in real-time intelligent video analytics. In this paper, we find visual foundation models like Vision Transformer (ViT) also have a dedicated acceleration mechanism for video analytics. To this end, we introduce Arena, an end-to-end edge-assisted video inference acceleration system based on ViT. We leverage the capability of ViT that can be accelerated through token pruning by only offloading and feeding Patches-of-Interest (PoIs) to the downstream models. Additionally, we employ probability-based patch sampling, which provides a simple but efficient mechanism for determining PoIs where the probable locations of objects are in subsequent frames. Through extensive evaluations on public datasets, our findings reveal that Arena can boost inference speeds by up to $1.58\times$ and $1.82\times$ on average while consuming only 54% and 34% of the bandwidth, respectively, all with high inference accuracy.

In some real-world applications, data samples are usually distributed on local devices, where federated learning (FL) techniques are proposed to coordinate decentralized clients without directly sharing users' private data. FL commonly follows the parameter server architecture and contains multiple personalization and aggregation procedures. The natural data heterogeneity across clients, i.e., Non-I.I.D. data, challenges both the aggregation and personalization goals in FL. In this paper, we focus on a special kind of Non-I.I.D. scene where clients own incomplete classes, i.e., each client can only access a partial set of the whole class set. The server aims to aggregate a complete classification model that could generalize to all classes, while the clients are inclined to improve the performance of distinguishing their observed classes. For better model aggregation, we point out that the standard softmax will encounter several problems caused by missing classes and propose "restricted softmax" as an alternative. For better model personalization, we point out that the hard-won personalized models are not well exploited and propose "inherited private model" to store the personalization experience. Our proposed algorithm named MAP could simultaneously achieve the aggregation and personalization goals in FL. Abundant experimental studies verify the superiorities of our algorithm.

Dimensionality reduction techniques are widely used for visualizing high-dimensional data. However, support for interpreting patterns of dimension reduction results in the context of the original data space is often insufficient. Consequently, users may struggle to extract insights from the projections. In this paper, we introduce DimBridge, a visual analytics tool that allows users to interact with visual patterns in a projection and retrieve corresponding data patterns. DimBridge supports several interactions, allowing users to perform various analyses, from contrasting multiple clusters to explaining complex latent structures. Leveraging first-order predicate logic, DimBridge identifies subspaces in the original dimensions relevant to a queried pattern and provides an interface for users to visualize and interact with them. We demonstrate how DimBridge can help users overcome the challenges associated with interpreting visual patterns in projections.

The highly specialist terms `quantum computing' and `quantum information', together with the broader term `quantum technologies', now appear regularly in the mainstream media. While this is undoubtedly highly exciting for physicists and investors alike, a key question for society concerns such systems' vulnerabilities -- and in particular, their vulnerability to collective manipulation. Here we present and discuss a new form of vulnerability in such systems, that we have identified based on detailed many-body quantum mechanical calculations. The impact of this new vulnerability is that groups of adversaries can maximally disrupt these systems' global quantum state which will then jeopardize their quantum functionality. It will be almost impossible to detect these attacks since they do not change the Hamiltonian and the purity remains the same; they do not entail any real-time communication between the attackers; and they can last less than a second. We also argue that there can be an implicit amplification of such attacks because of the statistical character of modern non-state actor groups. A countermeasure could be to embed future quantum technologies within redundant classical networks. We purposely structure the discussion in this chapter so that the first sections are self-contained and can be read by non-specialists.

Many explainable AI (XAI) techniques strive for interpretability by providing concise salient information, such as sparse linear factors. However, users either only see inaccurate global explanations, or highly-varying local explanations. We propose to provide more detailed explanations by leveraging the human cognitive capacity to accumulate knowledge by incrementally receiving more details. Focusing on linear factor explanations (factors $\times$ values = outcome), we introduce Incremental XAI to automatically partition explanations for general and atypical instances by providing Base + Incremental factors to help users read and remember more faithful explanations. Memorability is improved by reusing base factors and reducing the number of factors shown in atypical cases. In modeling, formative, and summative user studies, we evaluated the faithfulness, memorability and understandability of Incremental XAI against baseline explanation methods. This work contributes towards more usable explanation that users can better ingrain to facilitate intuitive engagement with AI.

With the advancement of diffusion models (DMs) and the substantially increased computational requirements, quantization emerges as a practical solution to obtain compact and efficient low-bit DMs. However, the highly discrete representation leads to severe accuracy degradation, hindering the quantization of diffusion models to ultra-low bit-widths. In this paper, we propose BinaryDM, a novel accurate quantization-aware training approach to push the weights of diffusion models towards the limit of 1-bit. Firstly, we present a Learnable Multi-basis Binarizer (LMB) to recover the representations generated by the binarized DM, which improves the information in details of representations crucial to the DM. Secondly, a Low-rank Representation Mimicking (LRM) is applied to enhance the binarization-aware optimization of the DM, alleviating the optimization direction ambiguity caused by fine-grained alignment. Moreover, a progressive initialization strategy is applied to training DMs to avoid convergence difficulties. Comprehensive experiments demonstrate that BinaryDM achieves significant accuracy and efficiency gains compared to SOTA quantization methods of DMs under ultra-low bit-widths. As the first binarization method for diffusion models, BinaryDM achieves impressive 16.0 times FLOPs and 27.1 times storage savings with 1-bit weight and 4-bit activation, showcasing its substantial advantages and potential for deploying DMs on resource-limited scenarios.

Human-like Agents with diverse and dynamic personality could serve as an important design probe in the process of user-centered design, thereby enabling designers to enhance the user experience of interactive application.In this article, we introduce Evolving Agents, a novel agent architecture that consists of two systems: Personality and Behavior. The Personality system includes three modules: Cognition, Emotion and Character Growth. The Behavior system comprises two modules: Planning and Action. We also build a simulation platform that enables agents to interact with the environment and other agents. Evolving Agents can simulate the human personality evolution process. Compared to its initial state, agents' personality and behavior patterns undergo believable development after several days of simulation. Agents reflect on their behavior to reason and develop new personality traits. These traits, in turn, generate new behavior patterns, forming a feedback loop-like personality evolution.In our experiment, we utilized simulation platform with 10 agents for evaluation. During the evaluation, these agents experienced believable and inspirational personality evolution. Through ablation and control experiments, we demonstrated the outstanding effectiveness of agent personality evolution and all modules of our agent architecture contribute to creating believable human-like agents with diverse and dynamic personalities. We also demonstrated through workshops how Evolving Agents could inspire designers.

The increasing integration of capacitive fingerprint recognition sensors in IoT devices presents new challenges in digital forensics, particularly in the context of advanced fingerprint spoofing. Previous research has highlighted the effectiveness of materials such as latex and silicone in deceiving biometric systems. In this study, we introduce Alginate, a biopolymer derived from brown seaweed, as a novel material with the potential for spoofing IoT-specific capacitive fingerprint sensors. Our research uses Alginate and cutting-edge image recognition techniques to unveil a nuanced IoT vulnerability that raises significant security and privacy concerns. Our proof-of-concept experiments employed authentic fingerprint molds to create Alginate replicas, which exhibited remarkable visual and tactile similarities to real fingerprints. The conductivity and resistivity properties of Alginate, closely resembling human skin, make it a subject of interest in the digital forensics field, especially regarding its ability to spoof IoT device sensors. This study calls upon the digital forensics community to develop advanced anti-spoofing strategies to protect the evolving IoT infrastructure against such sophisticated threats.

Scientific articles play a crucial role in advancing knowledge and informing research directions. One key aspect of evaluating scientific articles is the analysis of citations, which provides insights into the impact and reception of the cited works. This article introduces the innovative use of large language models, particularly ChatGPT, for comprehensive sentiment analysis of citations within scientific articles. By leveraging advanced natural language processing (NLP) techniques, ChatGPT can discern the nuanced positivity or negativity of citations, offering insights into the reception and impact of cited works. Furthermore, ChatGPT's capabilities extend to detecting potential biases and conflicts of interest in citations, enhancing the objectivity and reliability of scientific literature evaluation. This study showcases the transformative potential of artificial intelligence (AI)-powered tools in enhancing citation analysis and promoting integrity in scholarly research.

As innovation in deep learning continues, many engineers seek to adopt Pre-Trained Models (PTMs) as components in computer systems. Researchers publish PTMs, which engineers adapt for quality or performance prior to deployment. PTM authors should choose appropriate names for their PTMs, which would facilitate model discovery and reuse. However, prior research has reported that model names are not always well chosen - and are sometimes erroneous. The naming for PTM packages has not been systematically studied. In this paper, we frame and conduct the first empirical investigation of PTM naming practices in the Hugging Face PTM registry. We initiated our study with a survey of 108 Hugging Face users to understand the practices in PTM naming. From our survey analysis, we highlight discrepancies from traditional software package naming, and present findings on naming practices. Our findings indicate there is a great mismatch between engineers' preferences and practical practices of PTM naming. We also present practices on detecting naming anomalies and introduce a novel automated DNN ARchitecture Assessment technique (DARA), capable of detecting PTM naming anomalies. We envision future works on leveraging meta-features of PTMs to improve model reuse and trustworthiness.

北京阿比特科技有限公司